Molecular biology of colorectal cancer: Review of the literature

Abstract

Colorectal cancer (CRC) results from the progressive accumulation of genetic and epigenetic alterations that lead to the transformation of normal colonic epithelium to colon adenocarcinoma. From the analysis of the molecular genesis of colon cancer, four central tenets concerning the pathogenesis of cancer have been established. The first is that the genetic and epigenetic alterations that underlie colon cancer formation promote the cancer formation process because they provide a clonal growth advantage to the cells that acquire them. The second tenet is that cancer emerges via a multi-step progression at both the molecular and the morphologic level. The third is that loss of genomic stability is a key molecular step in cancer formation. The fourth is that hereditary cancer syndromes frequently correspond to germ line forms of key genetic defects whose somatic occurrences drive the emergence of sporadic colon cancers.

Share and Cite:

Kheirelseid, E. , Miller, N. and Kerin, M. (2013) Molecular biology of colorectal cancer: Review of the literature. American Journal of Molecular Biology, 3, 72-80. doi: 10.4236/ajmb.2013.32010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Friedberg, E.C. (2003) DNA damage and repair. Nature, 421, 436-440. doi:10.1038/nature01408
[2] Nowell, P.C. (2002) Tumor progression: A brief historical perspective. Seminars in Cancer Biology, 12, 261-266. doi:10.1016/S1044-579X(02)00012-3
[3] Maley, C.C., Galipeau, P.C., Li, X.H., et al. (2004) Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Research, 64, 3414-3427. doi:10.1158/0008-5472.CAN-03-3249
[4] Knudson, A.G. (2002) Cancer genetics. American Journal of Medical Genetics, 111, 96-102. doi:10.1002/ajmg.10320
[5] Fearon, E.R. and Vogelstein, B. (1990) A genetic model for colorectal tumorigenesis. Cell, 61, 759-767. doi:10.1016/0092-8674(90)90186-I
[6] Lengauer, C., Kinzler, K.W. and Vogelstein, B. (1998) Genetic instabilities in human cancers. Nature, 396, 643-649. doi:10.1038/25292
[7] Vogelstein, B. and Kinzler, K.W. (1996) Lessons from hereditary colorectal cancer. Cell, 87, 159-170. doi:10.1016/S0092-8674(00)81333-1
[8] Foulkes, W.D. (1995) A tale of four syndromes: Familial adenomatous polyposis, Gardner syndrome, attenuated APC and Turcot syndrome. Monthly Journal of the Association of Physicians, 88, 853-863.
[9] Soravia, C., Berk, T., Madlensky, L., et al. (1998) Genotype-phenotype correlations in attenuated adenomatous polyposis coli. American Journal of Human Genetics, 62, 1290-1301. doi:10.1086/301883
[10] Miyaki, M., Konishi, M., Kikuchiyanoshita, R., et al. (1994) Characteristics of somatic mutation of the adenomatous polyposis-coli gene in colorectal tumors. Cancer Research, 54, 3011-3020.
[11] Chung, D.C. (2000) The genetic basis of colorectal cancer: Insights into critical pathways of tumorigenesis. Gastroenterology, 119, 854-865. doi:10.1053/gast.2000.16507
[12] Powell, S.M., Zilz, N., Beazer-Barclay, Y., et al. (1992) APC mutations occur early during colorectal tumorigenesis. Nature, 359, 235-237. doi:10.1038/359235a0
[13] Vogelstein, B., Fearon, E.R., Hamilton, S.R., et al. (1988) Genetic alterations during colorectal-tumor development. New England Journal of Medicine, 319, 525-532. doi:10.1056/NEJM198809013190901
[14] Bokoch, G.M. and Der, C.J. (1993) Emerging concepts in the ras superfamily of Gtp-binding proteins. FASEB Journal, 7, 750-759
[15] Arber, N., Shapira, I., Ratan, J., et al. (2000) Activation of c-K-ras mutations in human gastrointestinal tumors. Gastroenterology, 118, 1045-1050. doi:10.1016/S0016-5085(00)70357-X
[16] Bos, J.L., Fearon, E.R., Hamilton, S.R., et al. (1987) Prevalence of ras gene-mutations in human colorectal cancers. Nature, 327, 293-297. doi:10.1038/327293a0
[17] Tsao, J.I. and Shibata, D. (1994) Further evidence that one of the earliest alterations in colorectal carcinogenesis involves APC. American Journal of Pathology, 145, 531-534.
[18] Ochiai, A. and Hirohashi, S. (1997) Multiple genetic alterations in gastric cancer. Oxford University Press, New York.
[19] Somasundaram, K. and El-Deiry, W.S. (2000) Tumor suppressor P53: Regulation and function. Frontiers in Bioscience, 5, D424-D437. doi:10.2741/Somasund
[20] Ohue, M., Tomita, N., Monden, T., et al. (1994) A frequent alteration of P53 gene in carcinoma in adenoma of colon. Cancer Research, 54, 4798-4804.
[21] Kikuchiyanoshita, R., Konishi, M., Ito, S., et al. (1992) Genetic changes of both P53 alleles associated with the conversion from colorectal adenoma to early carcinoma in familial adenomatous polyposis and nonfamilial adenomatous polyposis patients. Cancer Research, 52, 3965-3971.
[22] Lane, D.P. (1993) Cancer—A death in the life of P53. Nature, 362, 786-787. doi:10.1038/362786a0
[23] Levine, A.J. (1997) P53, the cellular gatekeeper for growth and division. Cell, 88, 323-331 doi:10.1016/S0092-8674(00)81871-1
[24] Howe, J.R. and Guillem, J.G. (1997) The genetics of colorectal cancer. Surgical Clinics of North America, 77, 175-195. doi:10.1016/S0039-6109(05)70538-7
[25] Fearon, E.R., Cho, K.R., Nigro, J.M., et al. (1990) Identification of a chromosome-18q gene that is altered in colorectal cancers. Science, 247, 49-56. doi:10.1126/science.2294591
[26] Bernet, A. and Mehlen, P. (2007) Dependence receptors: When apoptosis controls tumor progression. Bull Cancer, 98, E12-E17.
[27] Breivik, J. and Gaudernack, G. (1999) Genomic instability, DNA methylation, and natural selection in colorectal carcinogenesis. Seminars in Cancer Biology, 9, 245-254. doi:10.1006/scbi.1999.0123
[28] Herman, J.G., Umar, A., Polyak, K., et al. (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 95, 6870-6875. doi:10.1073/pnas.95.12.6870
[29] Kane, M.F., Loda, M., Gaida, G.M., et al. (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Research, 57, 808-811.
[30] Veigl, M.L., Kasturi, L., Olechnowicz, J., et al. (1998) Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proceedings of the National Academy of Sciences of the United States of America, 95, 8698-8702. doi:10.1073/pnas.95.15.8698
[31] Ramsahoye, B.H., Davies, C.S. and Mills, K.I. (1996) DNA methylation: Biology and significance. Blood Reviews, 10, 249-261. doi:10.1016/S0268-960X(96)90009-0
[32] Monk, M. (1995) Epigenetic programming of differential gene-expression in development and evolution. Developmental Genetics, 17, 188-197. doi:10.1002/dvg.1020170303
[33] Feil, R. and Kelsey, G. (1997) Genomic imprinting: A chromatin connection. American Journal of Human Genetics, 61, 1213-1219. doi:10.1086/301655
[34] Barbacid, M. (1987) Ras genes. Annual Review of Biochemistry, 56, 779-827. doi:10.1146/annurev.bi.56.070187.004023
[35] Jones, P.A. and Laird, P.W. (1999) Cancer epigenetics comes of age. Nature Genet, 21, 163-167. doi:10.1038/5947
[36] Grady, W.M., Willis, J., Guilford, P.J., et al. (2000) Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nature Genet, 26, 16-17. doi:10.1038/79120
[37] Baylin, S.B. and Herman J.G. (2000) DNA hypermethylation in tumorigenesis: Epigenetics joins genetics. Trends in Genetics, 16, 168-174. doi:10.1016/S0168-9525(99)01971-X
[38] Herman, J.G., Merlo, A. Mao, L., et al. (1995) Inactivation of the Cdkn2/P16/Mts1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Research, 55, 4525-4530.
[39] Toyota, M., Ahuja, N., Ohe-Toyota, M., et al. (1999) CpG island methylator phenotype in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 96, 8681-8686. doi:10.1073/pnas.96.15.8681
[40] Toyota, M., Ho, C., Ahuja, N., et al. (1999) Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Research, 59, 2307-2312.
[41] Ivanovich, J.L., Read, T.E., Ciske, D.J., et al. (1999) A practical approach to familial and hereditary colorectal cancer. American Journal of Medicine, 107, 68-77. doi:10.1016/S0002-9343(99)00168-0
[42] Watson, P. and Lynch, H.T. (1994) The Tumor Spectrum in Hnpcc. Anticancer Research, 14, 1635-1639.
[43] Aarnio, M., Sankila, R., Pukkala, E., et al. (1999) Cancer risk in mutation carriers of DNA-mismatch-repair genes. International Journal of Cancer, 81, 214-218. doi:10.1002/(SICI)1097-0215(19990412)81:2<214::AID-IJC8>3.0.CO;2-L
[44] Smyrk, T.C., Watson, P., Kaul, K., et al. (2001) Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer, 91, 2417-2422. doi:10.1002/1097-0142(20010615)91:12<2417::AID-CNCR1276>3.0.CO;2-U
[45] Alexander, J., Watanabe, T., Wu, T.T., et al. (2001) Histopathological identification of colon cancer with microsatellite instability. American Journal of Pathology, 158, 527-535. doi:10.1016/S0002-9440(10)63994-6
[46] Jass, J.R., Young, J. and Leggett, B.A. (2002) Evolution of colorectal cancer: Change of pace and change of direction. Journal of Gastroenterology and Hepatology, 17, 17-26. doi:10.1046/j.1440-1746.2002.02635.x
[47] Galiatsatos, P. and Foulkes, W.D. (2006) Familial adenomatous polyposis. American Journal of Gastroenterology, 101, 385-398. doi:10.1111/j.1572-0241.2006.00375.x
[48] Talbot, I.C., Burt, R., Jarvinen, H., et al. (2000) Familial adenomatous polyposis. In: Hamilton, S.R. and Aaltonen, L.A., Eds., WHO Classification of Tumours, Pathology and Genetics of Tumours of the Digestive System. IARC Press, Lyon, 120-125.
[49] Fallen, T., Wilson, M., Morlan, B., et al. (2006) Desmoid tumors—A characterization of patients seen at Mayo Clinic 1976-1999. Familial Cancer, 5, 191-194. doi:10.1007/s10689-005-5959-5
[50] Tomoda, C., Miyauchi, A., Uruno, T., et al. (2004) Cribriform-morular variant of papillary thyroid carcinoma: Clue to early detection of familial adenomatous polyposis-associated colon cancer. World Journal of Surgery, 28, 886-889. doi:10.1007/s00268-004-7475-4
[51] Cetta, F., Montalto, G., Gori, M., et al. (2000) Germline mutations of the APC gene in patients with familial adenomatous polyposis-associated thyroid carcinoma: Results from a European cooperative study. Journal of Clinical Endocrinology & Metabolism, 85, 286-292. doi:10.1210/jc.85.1.286
[52] Aretz, S., Koch, A., Uhlhaas, S., et al. (2006) Should children at risk for familial adenomatous polyposis be screened for hepatoblastoma and children with apparently sporadic hepatoblastoma be screened for APC germline mutations? Pediatric Blood & Cancer, 47, 811-818. doi:10.1002/pbc.20698
[53] Munitz, M.I. (1986) Polyposis syndromes. In: Ott, D.J. and Wu, W.C., Eds., Polypoid Diseases of the Colon, Urban & Schwarzenberg, Baltimore, 43-61.
[54] Dachman, A.H., Buck, J.L., Burke, A.P., et al. (1989) Cronkhite-Canada syndrome: Radiologic features. Gastrointestinal Radiology, 14, 285-290. doi:10.1007/BF01889219
[55] Gorlin, R.J., Cohen, M.M., Condon, L.M., et al. (1992) Bannayan-Riley-Ruvalcaba syndrome. American Journal of Medical Genetics, 44, 307-314. doi:10.1002/ajmg.1320440309
[56] Salem, O.S. and Steck, W.D. (1983) Cowdens disease (multiple hamartoma and neoplasia syndrome). A casereport and review of the English-literature. Journal of the American Academy of Dermatology, 8, 686-696. doi:10.1016/S0190-9622(83)70081-2
[57] Peutz, J.L.A. (1921) Over een zeer merkwaardige, gecombineerde familiaire polyposis van de slijmvliezen van den tractus intestinalis met die van de neuskeelholte en gepaard met eigenaardige pigmentaties van huiden slijmvliezen. Ned Maandschr v Geneesk, 10, 134-146.
[58] Jeghers, H., McKusick, V.A. and Katz, K.H. (1949) Generalized intestinal polyposis and melanin spots of the oral mucosa, lips and digits—A syndrome of diagnostic significance. New England Journal of Medicine, 241, 993-1005. doi:10.1056/NEJM194912222412501
[59] Tomlinson, I.P.M. and Houlston, R.S. (1997) PeutzJeghers syndrome. Journal of Medical Genetics, 34, 1007-1011. doi:10.1136/jmg.34.12.1007
[60] Buck, J.L., Harned, R.K., Lichtenstein, J.E., et al. (1992) Peutz-Jeghers syndrome. Radiographics, 12, 365-378.
[61] Spigelman, A.D. and Phillips, R.K.S. (1994) Peutz-Jeghers syndrome. In: Phillips, R.K.S., Spigelman, A.D. and Thomson, J.P.S., Eds., Familial Adenomatous Polyposis and Other Polyposis Syndromes, Edward Arnold, London, 188-202.
[62] Wang, Z.J., Ellis, I., Zauber, P., et al. (1999) Allelic imbalance at the LKB1 (STK11) locus in tumours from patients with Peutz-Jeghers’ syndrome provides evidence for a hamartoma-(adenoma)-carcinoma sequence. Journal of Pathology, 188, 9-13. doi:10.1002/(SICI)1096-9896(199905)188:1<9::AID-PATH326>3.0.CO;2-E
[63] Aaltonen, L.A. (2000) Hereditary intestinal cancer. Seminars in Cancer Biology, 10, 289-298. doi:10.1006/scbi.2000.0148
[64] McColl, I., Bussey, H.J.R., Veale, A.M.O., et al. (1964) Juvenile polyposis coli. Proceedings of the Royal Society of Medicine-London, 57, 896-897.
[65] Houlston, R., Bevan, S., Williams, A., et al. (1998) Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases. Human Molecular Genetics, 7, 1907-1912. doi:10.1093/hmg/7.12.1907
[66] Howe, J.R., Bair, J.L., Sayed, M.G., et al. (2001) Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nature Genet, 28, 184-187. doi:10.1038/88919
[67] Sayed, M.G., Ahmed, A.F. Ringold, J.R. et al. (2002) Germline SMAD4 or BMPR1A mutations and phenotype of juvenile polyposis. Annals of Surgical Oncology, 9, 901-906. doi:10.1007/BF02557528
[68] Popat, S. and Houlston, R.S. (2005) A systematic review and meta-analysis of the relationship between chromosome 18q genotype, DCC status and colorectal cancer prognosis. European Journal of Cancer, 41, 2060-2070. doi:10.1016/j.ejca.2005.04.039
[69] Boland, C.R., Thibodeau, S.N. Hamilton, S.R., et al. (1998) A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Research, 58, 5248-5257.
[70] Huang, J., Papadopoulos, N., McKinley, A.J., et al. (1996) APC mutations in colorectal tumors with mismatch repair deficiency. Proceedings of the National Academy of Sciences of the United States of America, 93, 9049-9054. doi:10.1073/pnas.93.17.9049
[71] Konishi, M., Kikuchi-Yanoshita, R., Tanaka, K., et al. (1996) Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. Gastroenterology, 111, 307-317. doi:10.1053/gast.1996.v111.pm8690195
[72] Miyaki, M., Iijima, T., Kimura, J., et al. (1999) Frequent mutation of ss-catenin and APC genes in primary colorectal tumors from patients with hereditary nonpolyposis colorectal cancer. Cancer Research, 59, 4506-4509.
[73] Fujiwara, T., Stolker, J.M., Watanabe, T., et al. (1998) Accumulated clonal genetic alterations in familial and sporadic colorectal carcinomas with widespread instability in microsatellite sequences. American Journal of Pathology, 153, 1063-1078. doi:10.1016/S0002-9440(10)65651-9
[74] Eshleman, J.R., Casey, G., Kochera, M.E., et al. (1998) Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53. Oncogene, 17, 719-725. doi:10.1038/sj.onc.1201986
[75] Yamamoto, H., Sawai, H. and Perucho M. (1997) Frame-shift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Research, 57, 4420-4426.
[76] Perucho, M. (1996) Cancer of the microsatellite mutator phenotype. Biological Chemistry, 377, 675-684.
[77] Yamamoto, H., Sawai, H., Weber, T.K. et al. (1998) Somatic frameshift mutations in DNA mismatch repair and proapoptosis genes in hereditary nonpolyposis colorectal cancer. Cancer Research, 58, 997-1003.
[78] Markowitz, S., Wang, J., Myeroff, L., et al. (1995) Inactivation of the type-II TGF-Beta receptor in colon-cancer cells with microsatellite instability. Science, 268, 1336-1338. doi:10.1126/science.7761852
[79] Piao, Z., Fang, W., Malkhosyan, S., et al. (2000) Frequent frameshift mutations of RIZ in sporadic gastrointestinal and endometrial carcinomas with microsatellite instability. Cancer Research, 60, 4701-4704.
[80] Mori, Y., Yin, J., Rashid, A., et al. (2001) Instabilotyping: Comprehensive identification of frameshift mutations caused by coding region microsatellite instability. Cancer Research, 61, 6046-6049.
[81] Vasen, H.F.A., Watson, P., Mecklin, J.P., et al. (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the international collaborative group on HNPCC. Gastroenterology, 116, 1453-1456. doi:10.1016/S0016-5085(99)70510-X
[82] Vasen, H.F.A., Mecklin, J.P., Khan, P.M., et al. (1991) The international collaborative group on hereditary nonpolyposis colorectal cancer (ICG-HNPCC). Diseases of the Colon & Rectum, 34, 424-425. doi:10.1007/BF02053699
[83] Rodriguez Bigas, M.A., Boland, C.R., Hamilton, S.R., et al. (1997) A National Cancer Institute workshop on hereditary nonpolyposis colorectal cancer syndrome: Meeting highlights and Bethesda guidelines. Journal of the National Cancer Institute, 89, 1758-1762.
[84] Umar, A., Boland, C.R., Terdiman, J.P., et al. (2004) Revised bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. Journal of the National Cancer Institute, 96, 261-268. doi:10.1093/jnci/djh034
[85] Aaltonen, L.A., Salovaara, R., Kristo, P., et al. (1998) Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. New England Journal of Medicine, 338, 1481-1487. doi:10.1056/NEJM199805213382101
[86] Lynch, H.T. and de la Chapelle, A. (2003) Genomic medicine—Hereditary colorectal cancer. New England Journal of Medicine, 348, 919-932. doi:10.1056/NEJMra012242
[87] Gryfe, R., Kim, H. Hsieh, E.T.K., et al. (2000) Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. New England Journal of Medicine, 342, 69-77. doi:10.1056/NEJM200001133420201
[88] Popat, S., Hubner, R. and Houlston, R.S. (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. Journal of Clinical Oncology, 23, 609-618. doi:10.1200/JCO.2005.01.086
[89] Lanza, G., Gafa, R., Santini, A., et al. (2006) Immunohistochemical test for MLH1 and MSH2 expression predicts clinical outcome in stage II and III colorectal cancer patients. Journal of Clinical Oncology, 24, 2359-2367. doi;10.1200/JCO.2005.03.2433
[90] Carethers, J.M., Smith, E.J., Behling, C.A., et al. (2004) Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology, 126, 394-401. doi:10.1053/j.gastro.2003.12.023
[91] Arnold, C.N., Goel, A. and Boland, C.R. (2003) Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. International Journal of Cancer, 106, 66-73. doi:10.1002/ijc.11176
[92] Ribic, C.M., Sargent, D.J., Moore, M.J., et al. (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. New England Journal of Medicine, 349, 247-257. doi:10.1056/NEJMoa022289

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.