Share This Article:

X-Ray Diffraction Is a Promising Tool to Characterize Coral Skeletons

Abstract Full-Text HTML XML Download Download as PDF (Size:1547KB) PP. 120-125
DOI: 10.4236/ampc.2013.31A015    5,313 Downloads   9,153 Views   Citations

ABSTRACT

The skeletons of corals are made of calcium carbonate by biomineralization process, in the form of aragonite or calcite. To understand the characteristics of coral skeletons, especially mineralogy, crystal phases, organization and structure in individual species, X-ray powder diffraction techniques have gained increased interest in recent years as useful non-destructive tools. This review provides an overview on the recent progress in this field and briefly introduces the related experimental approach. The application of X-ray diffraction (XRD) to elucidating the structural and mechanical properties of mineral crystals in corals is reviewed in terms of characterization of CaCO3 crystal orientation. In addition, we discuss how this technique has increased our understanding of the function of the organic matrix proteins of calcified coral skeletons during mineral formation. Such information is helpful in deducing the mechanical and structural model of corals with respect to biomineralization system of skeletons.



Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. A. Rahman, J. Halfar and R. Shinjo, "X-Ray Diffraction Is a Promising Tool to Characterize Coral Skeletons," Advances in Materials Physics and Chemistry, Vol. 3 No. 1A, 2013, pp. 120-125. doi: 10.4236/ampc.2013.31A015.

References

[1] M. A. Rahman, et al., “Calcite Formation in Soft Coral Sclerites Is Determined by a Single Reactive Extracellular Protein,” Journal of Biological Chemistry, Vol. 286, No. 36, 2011, pp. 31638-31649. doi:10.1074/jbc.M109.070185
[2] T. Watanabe, et al., “Molecular Analyses of Protein Components of the Organic Matrix in the Exoskeleton of Two Scleractinian Coral Species,” Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Vol. 136, No. 4, 2003, pp. 767-774. doi:10.1016/S1096-4959(03)00177-5
[3] M. A. Rahman and T. Oomori, “Structure, Crystallization and Mineral Composition of Sclerites in the Alcyonarian Coral,” Journal of Crystal Growth, Vol. 310, No. 15, 2008, pp. 3528-3534. doi:10.1016/j.jcrysgro.2008.04.056
[4] M. A. Rahman, et al., “Analysis of Proteinaceous Components of the Organic Matrix of Endoskeletal Sclerites from the Alcyonarian Lobophytum crassum,” Calcified Tissue International, Vol. 78, No. 3, 2006, pp. 178-185. doi:10.1007/s00223-005-0253-y
[5] M. A. Rahman and Y. Isa, “Characterization of Proteins from the Matrix of Spicules from the Alcyonarian, Lobophytum crassum,” Journal of Experimental Marine Biology and Ecology, Vol. 321, No. 2, 2005, pp. 71-82. doi:10.1016/j.jembe.2005.01.012
[6] M. A. Rahman, et al., “Proteins of Calcified Endoskeleton: II Partial Amino Acid Sequences of Endoskeletal Proteins and the Characterization of Proteinaceous Organic Matrix of Spicules from the Alcyonarian, Synularia polydactyla,” Proteomics, Vol. 5, No. 4, 2005, pp. 885893. doi:10.1002/pmic.200401130
[7] M. A. Rahman and T. Oomori, “Identification and Function of New Proteins in Calcified Endoskeleton: A New Insight in the Calcification Mechanism of Soft Corals,” Oceans, Vol. 1-4, 2008, pp. 2139-2145.
[8] I. Fukuda, et al., “Molecular Cloning of a cDNA Encoding a Soluble Protein in the Coral Exoskeleton,” Biochemical and Biophysical Research Communications, Vol. 304, No. 1, 2003, pp. 11-17. doi:10.1016/S0006-291X(03)00527-8
[9] S. M. A. D’Souza, C. Carr, S. W. Waller, A. M. Whitcombe and M. J. Vulfson, “Directed Nucleation of Calcite at a Crystal-Imprinted Polymer Surface,” Nature, Vol. 319, 1999, pp. 312-316. doi:10.1038/18636
[10] S. Weiner and L. Hood, “Soluble-Protein of Organic Matrix of Mollusk Shells: Potential Template for Shell Formation,” Science, Vol. 190, 1975, pp. 987-988. doi:10.1126/science.1188379
[11] M. A. Rahman and T. Oomori, “Analysis of Protein-Induced Calcium Carbonate Crystals in Soft Coral by NearField IR Microspectroscopy,” Analytical Sciences, Vol. 25, No. 2, 2009, pp. 153-155. doi:10.2116/analsci.25.153
[12] M. A. Rahman and T. Oomori, “In Vitro Regulation of CaCO3 Crystal Growth by the Highly Acidic Proteins of Calcitic Sclerites in Soft Coral, Sinularia polydactyla,” Connective Tissue Research, Vol. 50, No. 5, 2009, pp. 285-293.
[13] M. A. Rahman and T. Oomori, “Aspartic Acid-Rich Proteins in Insoluble Organic Matrix Play a Key Role in the Growth of Calcitic Sclerites in Alcyonarian Coral,” Chinese Journal of Biotechnology, Vol. 24, 2008, pp. 21272128.
[14] M. A. Rahman, et al., “Extracellular Matrix Protein in Calcified Endoskeleton: A Potential Additive for Crystal Growth and Design,” Journal of Crystal Growth, Vol. 324, No. 1, 2011, pp. 177-183. doi:10.1016/j.jcrysgro.2011.03.021
[15] Y. Dauphin, “Mineralizing Matrices in the Skeletal Axes of Two Corallium Species (Alcyonacea),” Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Vol. 145, No. 1, 2006, pp. 54-64. doi:10.1016/j.cbpa.2006.04.029
[16] H. Miyamoto, et al., “A Carbonic Anhydrase from the Nacreous Layer in Oyster Pearls,” Proceedings of the National Academy of Sciences of USA, Vol. 93, No. 18, 1996, pp. 9657-9660.
[17] A. Linde, et al., “Mineral Induction by Immobilized Polyanionic Proteins,” Calcified Tissue International, Vol. 44, No. 4, 1989, pp. 286-295. doi:10.1007/BF02553763
[18] F. Marin, et al., “Screening Molluscan cDNA Expression Libraries with Anti-Shell Matrix Antibodies,” Protein Expression and Purification, Vol. 30, No. 2, 2003, pp. 246252. doi:10.1016/S1046-5928(03)00105-0
[19] G. Falini, et al., “Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules,” Science, Vol. 271, No. 5245, 1996, pp. 67-69. doi:10.1126/science.271.5245.67
[20] D. G. Rancourt and M.-Z. Dang, “Absolute Quantification by Powder X-Ray Diffraction of Complex Mixtures of Crystalline and Amorphous Phases for Applications in the Earth Sciences,” American Mineralogist, Vol. 90, No. 10, 2005, pp. 1571-1586. doi:10.2138/am.2005.1794
[21] S. M. D’Souza, et al., “Directed Nucleation of Calcite at a Crystal-Imprinted Polymer Surface,” Nature, Vol. 398, No. 6725, 1999, pp. 312-316. doi:10.1038/18636
[22] J. B. Ries, “Skeletal Mineralogy in a High-CO2 World,” Journal of Experimental Marine Biology and Ecology, Vol. 403, No. 1-2, 2011, pp. 54-64. doi:10.1016/j.jembe.2011.04.006
[23] J. Titschack, et al., “Magnesium Quantification in Calcites [(Ca,Mg)CO3] by Rietveld-Based XRD Analysis: Revisiting a Well-Established Method,” American Mineralogist, Vol. 96, 2011, pp. 1028-1038. doi:10.2138/am.2011.3665
[24] L. C. Ellis, et al., “X-Ray Diffraction Evidence of Chitin in the Axial Skeleton of Antipatharian Corals,” Comparative Biochemistry and Physiology, Vol. 66B, 1980, pp. 163-165.
[25] R. B. Greegor, et al., “Strontianite in Coral Skeletal Aragonite,” Science, Vol. 275, 1997, pp. 1452-1454. doi:10.1126/science.275.5305.1452
[26] S. Weiner and L. Addadi, “Sea Urchins as Crystallographers-Response,” Science, Vol. 311, No. 5767, 2006, p. 1555.
[27] D. Dahan, R. Vago and Y. Golan, “Skeletal Architecture and Microstructure of the Calcifying Coral Fungia Simplex,” Materials Science and Engineering C, Vol. 23, No. 4, 2003, pp. 473-477. doi:10.1016/S0928-4931(02)00113-3
[28] M. A. Rahman and T. Oomori, “In Vitro Regulation of CaCO3 Crystal Growth by the Highly Acidic Proteins of Calcitic Sclerites in Soft Coral, Sinularia polydactyla,” Connective Tissue Research, Vol. 50, No. 5, 2009, pp. 285-293.
[29] A. M. Belchar, et al., “Control of Crystal Phase Switching and Orientation by Soluble Mollusc-Shell Proteins,” Nature, Vol. 381, 1996, pp. 56-58. doi:10.1038/381056a0
[30] M. A. Rahman, et al., “Studies on Two Closely Related Species of Octocorallians: Biochemical and Molecular Characteristics of the Organic Matrices of Endoskeletal Sclerites,” Marine Biotechnology, Vol. 8, 2006, pp. 415424. doi:10.1007/s10126-005-6150-6
[31] J. D. Termine, et al., “Osteonectin, a Bone-Specific Protein Linking Mineral to Collagen,” Cell, Vol. 26, No. 1, 1981, pp. 99-105. doi:10.1016/0092-8674(81)90037-4
[32] T. Takeuchi, et al., “In Vitro Regulation of CaCO3 Crystal Polymorphism by the Highly Acidic Molluscan Shell Protein Aspein,” FEBS Letters, Vol. 582, No. 5, 2008, pp. 591-596. doi:10.1016/j.febslet.2008.01.026
[33] S. Weiner and L. Addadi, “Acidic Macromolecules of Mineralized Tissues: The Controllers of Crystal Formation,” Trends in Biochemical Sciences, Vol. 16, 1991, pp. 252-256. doi:10.1016/0968-0004(91)90098-G
[34] S. Weiner, “Aspartic Acid-Rich Proteins: Major Components of the Soluble Organic Matrix of Mollusk Shells,” Calcified Tissue International, Vol. 29, No. 1, 1979. pp. 163-167. doi:10.1007/BF02408072
[35] M. A. Rahman and T. Oomori, “Identification and Function of New Proteins in Calcified Endoskeleton: A New Insight in the Calcification Mechanism of Soft Corals,” Oceans 2008, Vol. 1-4, 2008, pp. 2139-2145.
[36] M. A. Rahman, et al., “Analysis of the Proteinaceous Components of the Organic Matrix of Calcitic Sclerites from the Soft Coral Sinularia sp.,” PLoS ONE, Vol. 8, No. 3, Article ID: e58781. doi:10.1371/journal.pone.0058781
[37] M. Suzuki, et al., “An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation,” Science, Vol. 325, No. 5946, 2009, pp. 1388-1390. doi:10.1126/science.1173793
[38] S. M. Stanley and L. A. Hardie, “Secular Oscillations in the Carbonate Mineralogy of Reef-Building and Sediment-Producing Organisms Driven by Tectonically Forced Shifts in Seawater Chemistry,” Palaeogeography Palaeoclimatology Palaeoecology, Vol. 144, No. 1, pp. 319, 1998. doi:10.1016/S0031-0182(98)00109-6
[39] K. J. Davis, et al., “The Role of Mg2+ as an Impurity in Calcite Growth,” Science, Vol. 290, No. 5494, 2000, pp. 1134-1137. doi:10.1126/science.290.5494.1134
[40] K. M. Wilbur and A. M. Bernhardt, “Mineralization of Molluscan Shell: Effects of Free and Polyamono Acids on Crystal Growth Rate in Vitro,” American Zoologist, Vol. 22, No. 4, 1982, p. 952.
[41] L. Addadi, et al., “Mollusk Shell Formation: A Source of New Concepts for Understanding Biomineralization Processes,” Chemistry-A European Journal, Vol. 12, No. 4, 2006, pp. 981-987. doi:10.1002/chem.200500980
[42] L. Addadi, et al., “Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization,” Advanced Materials, Vol. 15, No. 12, 2003, pp. 959-970. doi:10.1002/adma.200300381
[43] L. Addadi, et al., “Structural Control over the Formation of Calcium Carbonate Mineral Phases in Biomineralization,” Supramolecular Stereochemistry NATO ASI Series, Vol. 473, 1995, pp. 127-139.
[44] L. Addadi, et al., “Structural and Stereochemical Relations between Acidic Macromolecules of Organic Matrices and Crystals,” Connective Tissue Research, Vol. 21, No. 1-4, 1989, pp. 127-134. doi:10.3109/03008208909050003

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.