Share This Article:

Lesion contrast differences in MRI sequences in multiple sclerosis: Correlation to clinical disability

Abstract Full-Text HTML XML Download Download as PDF (Size:914KB) PP. 319-326
DOI: 10.4236/jbise.2013.63A041    4,332 Downloads   6,521 Views   Citations

ABSTRACT

The purpose of this study was to analyze the lesion brightness (image contrast) in multiple MRI sequences in patients with relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), primary progressive MS (PPMS), and clinically isolated syndrome (CIS); and to correlate the lesion contrast with lesion volumes and neurological disability. MRI ex- amination at 1.5 T was performed on 80 patients with RRMS, SPMS, PPMS, or CIS. The protocol included T1- and T2-weighted spin echo (SE), fluid attenuated inversion recovery (FLAIR), T1-weighted SE with magnetization transfer preparation, and diffusion weighted imaging (DWI). Contrast was measured between MS lesions and normal appearing white matter. Lesion volume was calculated in T1-weighted- and FLAIR-images. All patients were examined neurologically including evaluation of expanded disability status scale (EDSS) score. Lesion contrast correlated with total brain lesion volume (p = 0.000 - 0.040). In patients with low EDSS, three sequences were able to differentiate between CIS and RRMS. SPMS and PPMS were separated by DWI. Lesion contrast correlated with EDSS score on T1-weighted imaging, with or without magnetization transfer preparation. Patient age correlated with lesion contrasts. Contrast measurements seem limited in radiological and clinical diagnosis of MS in reference to disease course, its activity and progression. The differentiation between MS subgroups might improve at 3 T and could help in leading to earlier treatment of the disease.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Rossi, M. , Raunio, M. , Ryymin, P. , Elovaara, I. and Dastidar, P. (2013) Lesion contrast differences in MRI sequences in multiple sclerosis: Correlation to clinical disability. Journal of Biomedical Science and Engineering, 6, 319-326. doi: 10.4236/jbise.2013.63A041.

References

[1] McDonald, W.I., Compston, A., Edan, G., et al. (2001) Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis. Annals of Neurology, 50, 121-127. doi:10.1002/ana.1032
[2] Polman, C.H., Reingold, S.C., Edan, G., et al. (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald criteria”. Annals of Neurology, 58, 840-846. doi:10.1002/ana.20703
[3] Polman, C.H., Reingold, S.C., Banwell, B., et al. (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology, 69, 292- 302. doi:10.1002/ana.22366
[4] Miller, D., Barkhof, F., Montalban, X., et al. (2005) Clinically isolated syndromes suggestive of multiple sclerosis, part I: Natural history, pathogenesis, diagnosis, and prognosis. The Lancet Neurology, 4, 281-288. doi:10.1016/S1474-4422(05)70071-5
[5] Sicotte, N.L., Voskuhl, R.R., Bouvier, S., et al. (2003) Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla. Investigative Radiology, 38, 423-427. doi:10.1097/01.RLI.0000065426.07178.f1
[6] Stankiewicz, J.M., Glanz, B.I., Healy, B.C., et al. (2011) Brain MRI lesion load at 1.5 T and 3 T versus clinical status in multiple sclerosis. Journal of Neuroimaging, 21, e50-e56. doi:10.1111/j.1552-6569.2009.00449.x
[7] Mugler, J.P. III and Brookeman, J.R. (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magnetic Resonanace in Medicine, 15, 152-157.
[8] Miller, D.H., Grossman, R.I., Reingold, S.C., et al. (1998) The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain, 121, 3-24. doi:10.1093/brain/121.1.3
[9] Schaefer, P.W., Grant, P.E. and Gonzalez, R.G. (2000) Diffusion-weighted MR imaging of the brain. Radiology, 217, 331-345.
[10] Bellmann-Strobl, J., Stiepani, H., Wuerfel, J., et al. (2009) MR spectroscopy (MRS) and magnetisation transfer imaging (MTI), lesion load and clinical scores in early relapsing remitting multiple sclerosis: A combined cross-sectional and longitudinal study. European Radiology, 19, 2066-2074. doi:10.1007/s00330-009-1364-z
[11] Hayton, T., Furby, J., Smith, K.J., et al. (2009) Grey matter magnetization transfer ratio independently correlates with neurological deficit in secondary progressive multiple sclerosis. Journal of Neurology, 256, 427-435. doi:10.1007/s00415-009-0110-4
[12] Drayer, B., Burger, P., Hurwitz, B., et al. (1987) Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: Increased iron content? American Journal of Roentgenology, 149, 357-363. doi:10.2214/ajr.149.2.357
[13] Brass, S.D., Chen, N.K., Mulkern, R.V., et al. (2006) Magnetic resonance imaging of iron deposition in neurological disorders. Topics in Magnetic Resonanace Imaging, 17, 31-40.
[14] Khalil, M., Enzinger, C., Langkammer, C., et al. (2009) Quantitative assessment of brain iron by R(2)* relaxometry in patients with clinically isolated syndrome and relapsing-remitting multiple sclerosis. Multiple Sclerosis, 15, 1048-1054. doi:10.1177/1352458509106609
[15] Neema, M., Arora, A., Healy, B.C., et al. (2009) Deep gray matter involvement on brain MRI scans is associated with clinical progression in multiple sclerosis. Journal of Neuroimaging, 19, 3-8. doi:10.1111/j.1552-6569.2008.00296.x
[16] Ceccarelli, A., Rocca, M.A., Neema, M., et al. (2010) Deep gray matter T2 hypointensity is present in patients with clinically isolated syndromes suggestive of multiple sclerosis. Multiple Sclerosis, 16, 39-44. doi:10.1177/1352458509350310
[17] Haacke, E.M., Makki, M., Ge, Y., et al. (2009) Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. Journal of Magnetic Resonance Imaging, 29, 537-544. doi:10.1002/jmri.21676
[18] Mittal, S., Wu, Z., Neelavalli, J., et al. (2009) Susceptibility-weighted imaging: Technical aspects and clinical applications, part 2. American Journal of Neuroradiology, 30, 232-252. doi:10.3174/ajnr.A1461
[19] Dastidar, P., Heinonen, T., Lehtimiki, T., et al. (1999) Volumes of brain atrophy and plaques correlated with neurological disability in secondary progressive multiple sclerosis. Journal of the Neurological Sciences, 165, 36- 42. doi:10.1016/S0022-510X(99)00071-4
[20] Ukkonen, M., Dastidar, P., Heinonen, T., et al. (2003) Volumetric quantitation by MRI in primary progressive multiple sclerosis: Volumes of plaques and atrophy correlated with neurological disability. European Journal of Neurology, 10, 663-669. doi:10.1046/j.1468-1331.2003.00617.x
[21] Ukkonen, M., Elovaara, I., Dastidar, P., et al. (2004) Urodynamic findings in primary progressive multiple sclerosis are associated with increased volumes of plaques and atrophy in the central nervous system. Acta Neurologica Scandinavica, 109, 100-105. doi:10.1034/j.1600-0404.2003.00184.x
[22] Taylor, I., Butzkueven, H., Litewka, L., et al. (2004) Serial MRI in multiple sclerosis: A prospective pilot study of lesion load, whole brain volume and thalamic atrophy. Journal of Clinical Neuroscience, 11, 153-158. doi:10.1016/S0967-5868(03)00145-0
[23] Mowry, E.M., Beheshtian, A., Waubant, E., et al. (2009) Quality of life in multiple sclerosis is associated with lesion burden and brain volume measures. Neurology, 72, 1760-1765. doi:10.1212/WNL.0b013e3181a609f8
[24] Bakshi, R., Neema, M., Healy, B.C., et al. (2008) Predicting clinical progression in multiple sclerosis with the magnetic resonance disease severity scale. Archives of Neurology, 65, 1449-1453. doi:10.1001/archneur.65.11.1449
[25] Heinonen, T., Dastidar, P., Kauppinen, P., et al. (1998) Semi-automatic tool for segmentation and volumetric analysis of medical images. Medical & Biological Engineering & Computing, 36, 291-296. doi:10.1007/BF02522473
[26] Bermel, R.A., Sharma, J., Tjoa, C.W., et al. (2003) A semiautomated measure of whole-brain atrophy in multiple sclerosis. Journal of Neurological Sciences, 208, 57- 65. doi:10.1016/S0022-510X(02)00425-2
[27] Zhang, Y., Brady, M. and Smith, S. (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions of Medical Imaging, 20, 45-57. doi:10.1109/42.906424
[28] Brück, W., Bitsch, A., Kolenda, H., et al. (1997) Inflammatory central nervous system demyelination: Correlation of magnetic resonance imaging findings with lesion pathology. Annals of Neurology, 42, 783-793. doi:10.1002/ana.410420515
[29] van Walderveen, M.A., Kamphorst, W., Scheltens, P., et al. (1998) Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology, 50, 1282-1288. doi:10.1212/WNL.50.5.1282
[30] van Waesberghe, J.H., Kamphorst, W., De Groot, C.J., et al. (1999) Axonal loss in multiple sclerosis lesions: Magnetic resonance imaging insights into substrates of disability. Annals of Neurology, 46, 747-754. doi:10.1002/1531-8249(199911)46:5<747::AID-ANA10>3.0.CO;2-4
[31] Heinonen, T., Dastidar, P., Eskola, H., et al. (1998) Applicability of semi-automatic segmentation for volumetric analysis of brain lesions. Journal of Medical Engineering & Technology, 22, 173-178. doi:10.3109/03091909809032536
[32] Dastidar, P., Heinonen, T., Vahvelainen, T., et al. (1999) Computerised volumetric analysis of lesions in multiple sclerosis using new semi-automatic segmentation software. Medical & Biological Engineering & Computing, 37, 104-107. doi:10.1007/BF02513274
[33] Lassmann. H. (1999) The pathology of multiple sclerosis and its evolution. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 354, 1635-1640. doi:10.1098/rstb.1999.0508
[34] Filippi, M., Yousry, T., Horsfield, M.A., et al. (1996) A high-resolution three-dimensional T1-weighted gradient echo sequence improves the detection of disease activity in multiple sclerosis. Annals of Neurology, 40, 901-907. doi:10.1002/ana.410400612
[35] Neema, M., Stankiewicz, J., Arora, A., et al. (2007) T1- and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis. Journal of Neuroimaging, 17, 16-21. doi:10.1111/j.1552-6569.2007.00131.x
[36] Tas, M.W., Barkhol, F., van Walderveen, M.A., et al. (1995) The effect of gadolinium on the sensitivity and specificity of MR in the initial diagnosis of multiple sclerosis. American Journal of Neuroradiology, 16, 259-264.
[37] Moore, G.R., Leung, E., MacKay, A.L., et al. (2000) A pathology-MRI study of the short-T2 component in formalin-fixed multiple sclerosis brain. Neurology, 55, 1506-1510. doi:10.1212/WNL.55.10.1506
[38] Laule, C., Leung, E., Lis, D.K., et al. (2006) Myelin water imaging in multiple sclerosis: Quantitative correlations with histopathology. Multiple Sclerosis, 12, 747-753. doi:10.1177/1352458506070928
[39] Rovira, A. and León, A. (2008) MR in the diagnosis and monitoring of multiple sclerosis: An overview. European Journal of Radiology, 67, 409-414. doi:10.1016/j.ejrad.2008.02.044
[40] Phuttharak, W., Galassi, W., Laopaiboon, V., et al. (2006) ADC measurements in various patterns of multiple sclerosis lesions. Journal of the Medical Association of Thailand, 89, 196-204.
[41] Droogan, A.G., Clark, C.A., Werring, D.J., et al. (1999) Comparison of multiple sclerosis clinical subgroups using navigated spin echo diffusion-weighted imaging. Magnetic Resonanace Imaging, 17, 653-661.
[42] Mesaros, S., Rocca, M., Sormani, M., et al. (2010) Bimonthly assessment of magnetization transfer magnetic resonance imaging parameters in multiple sclerosis: A 14-month, multicentre, follow-up study. Multiple Sclerosis, 16, 325-331. doi:10.1177/1352458509358713
[43] Parry, A., Clare, S., Jenkinson, M., et al. (2002) White matter and lesion T1 relaxation times increase in parallel and correlate with disability in multiple sclerosis. Journal of Neurology, 249, 1279-1286. doi:10.1007/s00415-002-0837-7
[44] Sormani, M.P., Rovaris, M., Comi, G., et al. (2009) A reassessment of the plateauing relationship between T2 lesion load and disability in MS. Neurology, 73, 1538-1542. doi:10.1212/WNL.0b013e3181c06679
[45] Trojano, M., Liguori, M., Bosco Zimatore, G., et al. (2002) Age-related disability in multiple sclerosis. Annals of Neurology, 51, 475-480. doi:10.1002/ana.10147

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.