Severe Plastic Deformation of Steel Induced by Ultrasonic Vibrations

Abstract

 

High-intensity ultrasonic vibration was focused on the tip of conical steel specimens to induce severe plastic deformation at room temperature. We found, for the first time, that grain size smaller than 200 nm was obtained. Furthermore, the sharp tip of the conical specimen became umbrella-shaped or disk-shaped. The tip size changed from 0.5 mm diameter to a disk about 5 mm diameter, representing a large amount of plastic deformation in the metal at the tip of the conical specimen.

Share and Cite:

C. Xu, Y. Cui and Q. Han, "Severe Plastic Deformation of Steel Induced by Ultrasonic Vibrations," Open Journal of Metal, Vol. 3 No. 1, 2013, pp. 1-5. doi: 10.4236/ojmetal.2013.31001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. S. Nalwa, “Preface,” In: H.S. Nalwa, Ed., Handbook of Nanostructured Materials and Nanotechnology, Academic Press, London, 2000, pp. ix-xii. doi:10.1016/B978-012513760-7/50001-0
[2] K. Kita, K. Saito, A. Inoue and T. Matsumoto, “Mechanical Properties of Al Based Alloys Containing Quasi-Crystalline Phase as a Main Component,” Materials Science and Engineering: A, Vol. 226-228, 1997, pp. 1004-1007. doi:10.1016/S0921-5093(96)10836-4
[3] K. E. Gonsalves, S. P. Rangara and J. Wang, “Chemical Synthesis of nanostructured Metals, Metal Alloys, and Semiconductors,” In: H. S. Nalwa, Ed., Handbook of Nanostructured Materials and Nanotechnology, Academic Press, London, 2000, pp.1-56. doi:10.1016/B978-012513760-7/50004-6
[4] H. Gleiter, “Nanocrystalline Materials,” Progress in Materials Science, Vol. 33, No. 4, 1989, pp. 223-315. doi:10.1016/0079-6425(89)90001-7
[5] M. Umemoto, Z. G. Liu and K. Masuyama, “Nanostructured Fe-C Alloys Produced by Ball Milling,” Scripta Materials, Vol. 44, No. 8-9, 2001, pp.1741-1745. doi:10.1016/S1359-6462(01)00794-1
[6] I. G. Brodova, D. V. Bashlykov and A. B. Manukhin, “Formation of Nanostructure in Rapidly Solidified Al-Zr Alloy by Severe Plastic Deformation,” Scripta Materialia, Vol. 44, No. 8-9, 2001, pp.1761-1764. doi:10.1016/S1359-6462(01)00791-6
[7] P. G. Sanders, J. A. Eastman and J. R. Weertman, “Elastic and Tensile Behavior of Nanocrystalline Copper and Palladium,” Acta Materialia, Vol. 45, No. 10, 1997, pp. 4019-4025. doi:10.1016/S1359-6454(97)00092-X
[8] R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov, “Bulk Nanostructured Materials from Severe Plastic Deformation,” Progress in Materials Science, Vol. 33, No. 2, 2000, pp. 103-189. doi:10.1016/S0079-6425(99)00007-9
[9] J. S. Hayes, R. Keyte and P. B. Prangnell, “Effect of Grain Size on the behavior of a Submicron Grained Al-3-wt%Mg Alloy Produced by Severe Deformation,” Materials Science and Technology, Vol. 16, No. 11-12, 2000, pp. 1259-1263. doi:10.1179/026708300101507479
[10] Y. Saito, H. Utsunomiya, H. Suzuki and T. Sakai, “Improvement in the R-Value of Aluminum Strip by a Continuous Shear Deformation Process,” Scripta Materialia, Vol. 42, No. 12, 2000, pp. 1139-1144. doi:10.1016/S1359-6462(00)00349-3
[11] J. Y. Huang, Y. T. Zhu, H. Jiang and T. C. Lowe, “Microstructures and Dislocation Configurations in Nanostructured Cu Processed by Repetitive Corrugation and Straightening,” Acta Materialia, Vol. 49, No. 9, 2001, pp. 1497-1505. doi:10.1016/S1359-6454(01)00069-6
[12] N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa, “Ultra-Fine Grained Bulk Steel Produced by Accumulative Roll-Bonding (ARB) Processs,” Scripta Materialia, Vol. 40, No. 7, 1999, pp. 795-800. doi:10.1016/S1359-6462(99)00015-9
[13] W. Chen, D. Ferguson and H. Ferguson, “Multi-Axis Deformation Methods to Achieve Extremely Large Strain and Ultrafine Grains,” In: R. S. Mishra, et al., Eds., Ultrafine Grained Materials, TMS, Warrendale, Pennsylvania, 2000, pp. 235-245.
[14] O. V. Abramov, “High-Intensity Ultrasonics Theory and Industrial Applications,” Gorden and Breach Science Piblishers, Singapore, 1998.
[15] P. V. Liddicoat, X. Liao, Y. Zhao, Y. T. Zhu, M. Y. Murashkin, E. J. Lavernia, R. Z. Valiev and S. P. Ringer, “Nanostructural Hierarchy Increases the Strength of Aluminum Alloys,” Nature Communications, 2010, Vol. 1062, pp. 1-7. doi:10.1038/ncomms1062
[16] O. V. Abramov, “High-Intensity Ultrasonics Theory and Industrial Applications,” Gorden and Breach Science Piblishers, Singapore, 1998.
[17] Q. Han, C. Xu and X. Jian, “A Method of Producing Nanostructured Metals Using High-Intensity Ultrasonic Vibration,” US Patent No. 0256764, 2007.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.