Molecularly Imprinted Polymers for the Detection of Food Toxins: A Minireview

Abstract

Food contamination from natural or anthropogenic sources poses severe risks to human health. It is now largely accepted that continuous exposure to low doses of food Toxins such as mycotoxins, phycotoxins can be related to several chronic diseases, including some type of cancer and serious hormonal dysfunctions. Contemporary analytical methods have the sensitivity required for contamination detection and quantification, but direct application of these methods on real samples can be rarely performed because of matrix complexity. Thus, selective analytical methods, relying on intelligent functional materials are needed. Recent years have seen the increasing use of molecular imprinted polymers in contaminant analysis in food because these materials seem to be particularly suitable for applications where analyte selectivity is essential. It offers several advantages to the agrofood industry in areas such as analysis, sensoring, extraction, or preconcentration of components. It has the potential of becoming a tool for acquiring truly simple, rapid, and robust direct measurements.

Share and Cite:

Saini, S. and Kaur, A. (2013) Molecularly Imprinted Polymers for the Detection of Food Toxins: A Minireview. Advances in Nanoparticles, 2, 60-65. doi: 10.4236/anp.2013.21011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. A. Lewis and G. R. Fenwick, “Food Contaminants: Sources and Surveillance,” C. S. Creaser and R. Purchase, Eds., Royal Society of Chemistry, Cambridge, 1991, pp. 1-20. doi:10.1533/9781855737846.1
[2] J. W. DeVries, M. W. Trucksess and L. S. Jackson, Eds., “Mycotoxins and Food Safety,” Kluwer, New York, 2002. doi:10.1007/978-1-4615-0629-4
[3] H. P. Van Egmond, “Molecular and Life History Effects of a Natural Toxin on Herbivorus and Non-Target Soil Anthropods,” Ecotoxicology, Vol. 21, No. 4, 2012, pp. 1084-1093. doi:10.1007/s10646-012-0861-z
[4] S. M. Hays and L. L. Aylward, “Dioxins Risks in Perspective: Past, Present and Future,” Regulatory Toxicology and Pharmacology, Vol. 37, No. 2, 2003, pp. 202-217. doi:10.1016/S0273-2300(02)00044-2
[5] S. Moret and L. S. Conte, “Polycyclic Aromatic Hydro carbons in Edible Fats and Oils: Occurence and Analy tical Methods,” Journal of Chromatography A, Vol. 882, No. 1-2, 2000, pp. 245-253. doi:10.1016/S0021-9673(00)00079-0
[6] J. D. G. McEvoy, “Cotamination of Animal Feeding Stuffs as a Cause of Residue in Food: A Review of Regulatory Aspects Incidence and Control,” Analytica Chimica Acta, Vol. 473, No. 1-2, 2002, pp. 3-26. doi:10.1016/S0003-2670(02)00751-1
[7] M. Careri, F. Bianchi and C. Corradini, “Recent Advances in the Application of Mass Spectrometry in Food-Related Analysis,” Journal of Chromatography A, Vol. 970, No. 1-2, 2002, pp. 3-64. doi:10.1016/S0021-9673(02)00903-2
[8] P. L. Buldini, L. Ricci and J. L. Sharma, “Recent Appli cations of Sample Preparation Technique in Food Analy sis,” Journal of Chromatography A, Vol. 975, No. 1-2, 2002, pp. 47-70. doi:10.1016/S0021-9673(02)01335-3
[9] A. Juan-Garcia, G. Font and Y. Pico, “Pesticide Analysis by Capillary Electrophoresis,” Journal of Separation Science, Vol 28, No. 9-10, 2005, pp. 787-790.
[10] S. L. Wilkinson, “Eating Safely in a Dirty World,” Chemical & Engineering News, Vol. 75, No. 5, 1997, pp. 24 33. doi:10.1021/cen-v075n045.p024
[11] J. H. T. Luong, P. Bouvrette and K. B. Male, “Development and Applications of Biosensors in Food Analysis,” Trends in Biotechnology, Vol. 15, No. 9, 1997, pp. 369 377. doi:10.1016/S0167-7799(97)01071-8
[12] C. Malitesta, E. Mazzotta, R. A. Picca, A. Poma, I. Chianella, L. Ye and K. Haupt, “MIPs Sensors: Electro chemical Approach,” Analytical and Bioanalytical Che mistry, Vol. 402, No. 5, 2004, pp. 1827-1846. doi:10.1007/s00216-011-5405-5
[13] B. Toth and G. Hovari, “Chromatograpghy, SPE and Capillary Electrophoresis, MIPs: Towards Selective Stationary Phases in Liquid Chromatography and Electrophoresis,” Analytical and Bioanalytical Chemistry, Vol. 325, No. 6, 2012, pp. 267-306.
[14] C. Alexander, L. Davidson and W. Hayes, “Imprinted Polymers: Artificial Molecular Recognition Materials with Applications in Synthesis and Catalysis,” Tetrahedron, Vol. 59, No. 12, 2005, pp. 2025-2057. doi:10.1016/S0040-4020(03)00152-2
[15] F. Lanza and B. Sellergren, “MIPs Polymers New Tailor Made Materials for Selective Solid Phase Extraction,” Advances in Chromatography, Vol. 41, No. 3, 2001, pp. 138-142.
[16] V. Pichon, F. C. Hugon, “Role of MIPs for Selective Determination of Environmental Pollutants,” Analytica Chimica Acta, Vol. 622, No. 1, 2008, pp. 48-61. doi:10.1016/j.aca.2008.05.057
[17] X. Jia, H. Li, J. Luo, Q. Lu, Y. Peng, L. Shi, L. Liu, S. Du and G. Zu, “Rational Design of Core Shell MIPs Based on Computational Simulation and Doehlert Experimental Optimization: Application to the Separation of Tanshi none IIA from Salvia Miltiorrhiza Bunge,” Analytical and Bioanalytical Chemistry, Vol. 403, No. 9, 2012, pp. 2691 2703. doi:10.1007/s00216-012-6078-4
[18] A. G. V. De Prada, P. Martínez-Ruiz, A. J. Reviejo and J. M. Pingarrón, “Solid-Phase Molecularly Imprinted On Line Preconcentration and Voltammetric Determination of Sulfamethazine in Milk,” Analytica Chimica Acta, Vol. 539, No. 1-2, 2005, pp. 125-132. doi:10.1016/j.aca.2005.02.068
[19] C. Cacho, E. Turiel, A. Martin-Esteba, C. Perez-Conde and C. Camara, “Cleanup of Triazines in Vegetable Ex tracts by Molecularly-Imprinted Solid-Phase Extraction using a Propazine-Imprinted Polymer,” Analytical and Bioanalytical Chemistry, Vol. 376, No. 4, 2003, pp. 491 496. doi:10.1007/s00216-003-1915-0
[20] F. Chapuis, V. Pichon, F. Lanza, B. Sellergren and M. C. Hennion, “Retention Mechanism of Analytes in the Solid Phase Extraction Process Using Molecularly Imprinted Polymers—Application to the Extraction of Triazines from Complex Matrices,” Journal of Chromatography B, Vol. 804, 2004, pp. 93-101. doi:10.1016/j.jchromb.2003.12.033
[21] N. M. Maier, G. Buttinger, S. Welhartizki, E. Gavioli and W. Lindner, “Molecularly Imprinted Polymer-Assisted Sample Clean-Up of Ochratoxin A from Red Wine: Mer its and Limitations,” Journal of Chromatography B, Vol. 804, No. 1, 2004, pp. 103-111. doi:10.1016/j.jchromb.2004.01.014
[22] C. Baggiani, L. Anfossi and C. Giovannoli, “SPE of Ochratoxin by MIPs,” Analytica Chimica Acta, Vol. 591, No. 1, 2007, pp. 29-39. doi:10.1016/j.aca.2007.01.056
[23] C. He, Y. Long, J. Pan and F. Liu, “Application of MIPs to SPE of Analytes from Real Samples,” Journal of Bio chemical and Biophysical Methods, Vol. 70, No. 2, 2007, pp. 133-150. doi:10.1016/j.jbbm.2006.07.005
[24] G. Theodoridis and P. Manesiotis, “Selective Solid-Phase Extraction Sorbent for Caffeine Made by Molecular Imprinting,” Journal of Chromatography A, Vol. 948, No. 1-2, 2002, pp. 163-169. doi:10.1016/S0021-9673(01)01457-1
[25] A. Molinelli, R. Weiss and B. Mizaikoff, “Advanced Solid Phase Extraction Using Molecularly Imprinted Poly mers for the Determination of Quercetin in Red Wine,” Journal of Agricultural and Food Chemistry, Vol. 50, No. 7, 2002, pp. 1804-1808. doi:10.1021/jf011213q
[26] H. Yan, J. Qiao, Y. Pei, T. Long, W. Ding and K. Xie, “Molecularly Imprinted Solid Phase Extraction Coupled to Liquid Chromatography for Determination of Suzan Dyes in Preserved Beancurds,” Food Chemistry, Vol. 132, No. 1, 2012, pp. 649-654. doi:10.1016/j.foodchem.2011.10.105
[27] G. Brambilla, M. Fiori, B. Rizzo, V. Crescenzi and G. Masci, “Use of Molecularly Imprinted Polymers in the Solid-Phase Extraction of Clenbuterol from Animal Feeds and Biological Matrices,” Journal of Chromatography B, Vol. 759, No. 1, 2001, pp. 27-32. doi:10.1016/S0378-4347(01)00199-2
[28] K. Farrington, E. Magner and F. Regan, “Predicting the Performance of Molecularly Imprinted Polymers: Selective Extraction of Caffeine by Molecularly Imprinted Solid Phase Extraction,” Analytica Chimica Acta, Vol. 566, No. 1-2, 2006, pp. 60-68. doi:10.1016/j.aca.2006.02.057
[29] A. G. V. DePrada, A. J. Reviejo and J. M Pingarron, “A Method for the Quantification of Low Concentration Sulfamethazine Residues in Milk Based on Molecularly Imprinted Clean-Up and Surface Preconcentration at a Nafion-Modified Glassy Carbon Electrode,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 40, No. 2, 2006, pp. 281-286. doi:10.1016/j.jpba.2005.07.022
[30] D. Wang, S. P. Hong and K. H. Row, “Solid Extraction of Caffeine and Theophylline from Green Tea by Molecular Imprinted Polymers,” Korean Journal of Chemical Engi neering, Vol. 21, No. 4, 2004, pp. 853-857. doi:10.1007/BF02705530
[31] E. Martinez-Carballo, C. Gonzalez-Barreiro, S. Scharf and O. Gans, “Environmental Monitoring Study of Selected Veterinary Antibiotics in Animal Manure and Soils in Austria,” Environmental Pollution, Vol. 148, No. 2, 2007, pp. 570-579. doi:10.1016/j.envpol.2006.11.035
[32] A. K. Wihlborg, B. Boyd, S. Kroonauer and C. Widstrand, MIP Technologies AB, Lund Sweden.
[33] D. Kowalski, E. Pobozy and M. Trojanowicz, “Flow Injection Preconcentration of Chlrophenicol Using MIPs for HPLC Determination in Environmental Samples,” Journal of Automated Methods & Management in Che mistry, Vol. 2011, No. 10, 2011, pp. 1-10. doi:10.1155/2011/143416
[34] J. L. Suárez-Rodriguez and M. E. Diaz-Garcia, “Flavonol Fluorcent Flow-Through Sensing Based on a Molecular Imprinted Polymers,” Analytica Chimica Acta, Vol. 405, No. 1-2, 2000, pp. 67-76. doi:10.1016/S0003-2670(99)00728-X
[35] A. G. Prada, P. Mart?nez-Ruiz, A. J. Reviejo and J. M. Pingarron, “Solid Phase Mips On-Line Preconcentration and Volatmetric Determination of Sulfamethazine in Milk,” Analytica Chimica Acta, Vol. 539, No. 1-2, 2005, pp. 125 132. doi:10.1016/j.aca.2005.02.068
[36] J. Du, “Molecular Imprinted Based Chemiluminesecnce Techniques in Pharmaceutical Analysis,” Current Pahar maceutical Analysis, Vol. 6, No. 1, 2010, pp. 30-38.
[37] M. Avila, M. Zougagh, A. Escarpa and A. Rios, “Sup ported Liquid Membrane Piezoelectric Flow Sensor with Molecularly Imprinted Polymers for the Determination of Vanillin in Food Samples,” Talanta, Vol. 72, No. 4, 2007, pp. 1362-1369. doi:10.1016/j.talanta.2007.01.045
[38] M. Nakamura, M. Ono, T. Nakajima, Y. Ito, T. Aketo and J. Haginaka, “Uniformly Sized Molecularly Imprinted Polymers for Atropine and Its Application to Determi nation of Atropine and Scopolamine in Pharmaceuticals Preparations Containing Scopolia Extract,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 37, No. 2, 2005, pp. 231-237. doi:10.1016/j.jpba.2004.10.017
[39] J. Xie, L. Zhu and X. Xu, “ Direct Extraction of Specific Pharmacophoric Flavonoids from Ginko Leaves,” Analy tical Chemistry, Vol. 74, No. 10, 2002, pp. 2352-2360. doi:10.1021/ac015755i
[40] C. Alexander, H. S. Andersson, L. I. Andersson, R. J. Ansell, N. Kirsch, I. A. Nicholls, J. O’Mahony and M. J. Whitcombe, “Molecular Imprintring Science and Tech nology: A Survey of the Literature for the Years,” Journal of Molecular Recognition, Vol. 19, No. 2, 2006, pp. 106-180. doi:10.1002/jmr.760
[41] Society for Molecular Imprinting Database. http://www.smi.tuberlin.de/SMlbase.htm
[42] ISIS Web of Knowledge, 2008. http://www.isinet.com
[43] Y. Yabe, T. Ninomiya, T. Tatsuno and T. Okada, “Simple Colorimetric Determination of Carrageenan in Jellies and Salad Dressings,” Journal of the Association of Official Analytical Chemists, Vol. 74, No. 1, 1991, pp. 1019 1022.
[44] H. Oka, H. Nakazawa, K. Harada and J. D. MacNeil, “Chemical Analysis of Antibiotics Used in Agriculture,” AOAC International, Arlington, 1995.
[45] G. F. M. Ball, “Water-Soluble Vitamin Assays in Human Nutrition,” Chapman and Hall, London, 1994. doi:10.1007/978-1-4615-2061-0
[46] K. Oestgaard, “Enzymic Microassay for the Determination and Characterization of Alginates,” Carbohydrate Polymers, Vol. 19, No. 1, 1992, pp. 51-59. doi:10.1016/0144-8617(92)90054-T
[47] A. Aherne, C. Alexander, M. J. Payne, N. Perez and E. N. Vulfson, “Bacteria-Mediated Lithography of Polymer Sur faces,” Journal of the American Chemical Society, Vol. 118, No. 36, 1996, pp. 8771-8772. doi:10.1021/ja960123c
[48] B. Sellergren, “Imprinted Dispersion Polymers: A New Class of Easily Accessible Affinity Stationary Phases,” Journal of Chromatography A, Vol. 673, No. 1, 1994, pp. 133-141. doi:10.1016/0021-9673(94)87066-7
[49] J. Matsui, O. Doblhoff-Dier and T. Takeuchi, “Atrazine Selective Polymer Prepared by Molecular Imprinting Technique,” Chemistry Letters, Vol. 24, No. 6, 1995, pp. 489-492. doi:10.1246/cl.1995.489
[50] J. Matsui, Y. Miyoshi and T. Takeuchi, “Fluoro Functionalized Molecularly Imprinted Polymers Selective for Herbicides,” Chemistry Letters, Vol. 24, No. 11, 1995, pp. 1007-1008. doi:10.1246/cl.1995.1007
[51] M. Muldoon and L. Stanker, “Polymer Synthesis and Characterization of a Molecularly Imprinted Sorbent As say for Atrazine,” Journal of Agricultural and Food Chemistry, Vol. 43, No. 6, 1995, pp. 1424-1427. doi:10.1021/jf00054a002
[52] M. Siemann, L. I. Andersson and K. Mosbach, “Selective Recognition of the Herbicide Atrazine by Noncovalent Molecularly Imprinted Polymers,” Journal of Agricultural and Food Chemistry, Vol. 44, No. 1, 1996, pp. 141 145. doi:10.1021/jf950233n
[53] J. Matsui, Y. Miyoshi, O. Doblhoff-Dier and T. Takeuchi, “A Molecularly Imprinted Synthetic Polymer Receptor Selective for Atrazine,” Analytical Chemistry, Vol. 67, No. 1, 1995, pp. 4404-4408. doi:10.1021/ac00119a032
[54] S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, A. K. Yano, I. Karube, Y. P. Parhometz and A. V. Elskaya, “Atrazine Sensing by Molecularly Imprinted Membranes,” Biosensors and Bioelectronics, Vol. 10, No. 9, 1995, pp. 959-964. doi:10.1016/0956-5663(95)99233-B

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.