ESR Dosimetric Study on Gamma Induced Radicals in DL-Ornithine Hydrochloride
Sayeda Eid
.
DOI: 10.4236/ojpchem.2013.31005   PDF    HTML   XML   3,500 Downloads   6,020 Views  

Abstract

DL-ornithine hydrochloride rods (3 ×10 mm) were studied to be a radiation sensitive material for EPR dosimetry. The rods have specified EPR signal developed under irradiation and its intensity increases with the increase in absorbed dose. The intensity also affected by the concentration of DL-ornithine in the rods. The prepared rods can be used in the dose range from 0.5 - 50 kGy. The obtained number of free radicals per 100 eV (G value) was found to be 0.3551 ± 0.0333. The hyperfine (hf) coupling constant is 2.325 mT at g-factor 2.033. The rods have the advantage of negligible humidity effects during irradiation. The pre and post- irradiation stability was found to be satisfactory.

Share and Cite:

S. Eid, "ESR Dosimetric Study on Gamma Induced Radicals in DL-Ornithine Hydrochloride," Open Journal of Polymer Chemistry, Vol. 3 No. 1, 2013, pp. 23-28. doi: 10.4236/ojpchem.2013.31005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Ikeya, “New Applications of Electron Spin Resonance— Dating, Dosimeter and Microscopy,” World Scientific, Singapore, 1993.
[2] T. Kojima, R. Tanaka, Y. Morita and T. Seguchi, “Alanine Dosimeter Using Polymers as Binders,” International Journal of Radiation Applications and Instrumentation, Part A. Applied Radiation and Isotopes, Vol. 37, No. 8, 1986, pp. 517-520. doi:10.1016/0883-2889(86)90158-9
[3] D. F. Regulla and U. Deffner, “Dosimetry by ESR Spectroscopy of Alanine,” The International Journal of Applied Radiation and Isotopes, Vol. 33, No. 11, 1982, pp. 1101-1114. doi:10.1016/0020-708X(82)90238-1
[4] S.Talbi, J. Raffii, S. Arena, J. Colombani, P. Piccerelle, P. Prinderre and J. M. Dolo, “EPR Study of Gamma Induced Radicals in Amino Acids Powders,” Spectrochemica Acta Part A, Vol. 60, 2004, pp. 1335-1341.
[5] V. Gancheva, E. Sagstuen and N. D. Yordanv, “Study on the EPR/Dosimetric Properties of Some Substituted Alanines,” Radiation Physics and Chemistry, Vol. 75, No. 2, 2006, pp. 329-335.
[6] ASTM (American Society for Testing and Materials), “ISO/ASTM51607-04 Standard Practice for Use of the Alanine-EPR Dosimetry System (Nuclear Technology Standards),” West Conshohocken, 2002.
[7] W. B. Beshir, A. A. Abdel-Fattah, F. Abdel-Rehim and H. M. Hassan, “EPR Dosimetric Properties of RadiationFormed Radicals in Arginine Monohydrochloride,” Journal of Radiation Research and Applied Sciences. Vol. 4, No. 3, 2011, pp. 777-797.
[8] A. A. Abdel-Fattah, H. Ezz Eldin and F. Abdel-Rehim, “New Alanine/EPR Dosimeter Using EVA Copolymer/ Paraffin as a Binder for High-Dose Radiation Dosimetry: Performance Characterization,” International Journal of Polymeric Materials, Vol. 53, No. 11, 2004, pp. 927-939. doi:10.1080/00914030490502445
[9] F. Bermann, H. De Choudens and S. Descours, “Advances in Physical and Biological Radiation Detectors,” Proceedings of a Symposium on New Developments in Physical and Biological Radiation Detectors, Vienna, 23-27 November 1970, IAEA Publication STI/PUB/269 International Atomic Energy Agency, p. 331.
[10] D. F. Regulla and U. Deffner, “Dosimetry by ESR Spectroscopy of Alanine,” The International Journal of Applied Radiation and Isotopes, Vol. 33, No. 11, 1982, pp. 1101-1114. doi:10.1016/0020-708X(82)90238-1
[11] W. W. Bradshaw, D. G. Cadena, Jr., G. W. Crawford and H. A. W. Spetzler, “The Use of Alanine as a Solid Dosimeter,” Radiation Research, Vol. 17, No. 1, 1962, pp. 11-21. doi:10.2307/3571206
[12] D. F. Regulla and U. Deffner, “Dosimetry by ESR Spectroscopy of Alanine,” Proceedings of International Symposium on High-Dose Dosimetry (221 SM-272/39), Vienna, 8-12 December 1984, International Atomic Energy Agency.
[13] W. B. Beshir, H. M. Ezz El-Din, A. A. Abdel-Fattah and S. Ebrahim, “Alanine/EPR Pellet to Dosimeter Using Vinyl butyral-co-vinyl alcohol-co-vinyl acetate)copolymer as a Binder for Radiation Dosimetry,” Arab Journal of Nuclear Sciences and Applications, Vol. 38, No. 1, 2005, p. 24
[14] T. J. L. Sollier, D. C. Mosse, M. M. T. Chartier and J. E. Joli, “The LMRI ESR/Alanine Disimetry System: Description and Performance,” Applied Radiation and Isotopes, Vol. 40, No. 10-12, 1989, pp. 961-965.
[15] J. M. Arber Sollier, P. H. G. Sharpe, H. A. Joly, J. R. Morton and K. F. Preston, “The ESR/Alanine DosimeterPower Dependence of the X Band,” Applied Radiation and Isotopes, Vol. 42, No. 7, 1991, pp. 665-668. doi:10.1016/0883-2889(91)90037-2
[16] D. F. Regulla, U. A. Deffner, O. Schidewolf, A. Vogenauer and A. Wiser, “Progress in Alanine/ESR Transfer Dosimetry,” IAEA-TECDOC-321, IAEA, Viena, 1983.
[17] I. Janovsky, “Radiation Processing,” (1991), Proceedings of a Symposium, Vienna, 1990, IAEA STII/PUB/846, IAEA, pp. 173-187.
[18] M. Ikeya, “Techniques of Radiation Dosimetry: Electron Spin Resonance Dosimetry,” In: K. Mahesh, and D. R. Viji, Eds., Chapter 15, Wiley Eastern, NewDelhi, 2000. doi:10.1143/JJAP.39.6236
[19] M. Ikeya, “Techniques of Radiation Dosimetry Electron Spin Resonance Dosimetry,” In: K. Mahesh and D. R. Viji, Eds., Chapter 15, Wiley eastern, New Delhi, 1985.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.