Parthenogenesis and activation of mammalian oocytes for in vitro embryo production: A review

Abstract

Parthenogenesis is a form of asexual reproduction found in females, where growth and development of embryos occurs without fertilization by a male. Parthenogenesis occurs naturally in aphids, Daphnia, rotifers, nematodes and some other invertebrates but can also be induced efficiently in mammalian oocytes by providing appropriate stimuli invitro. Recently, parthenogenesis has attracted wide attention because of the role of activated oocytes in the field of research that have been described such as intra cytoplasmic sperm injection, cloning by nuclear transfer, somatic cell cloning, investigating culture conditions etc. & potential for deriving pluripotent stem cell lines and their differentiation into various cell lines that can be utilized for various tissue engineering applications. The parthenogenetically activated oocytes possess maternal genome and can developed in to either haploid, diploid or polyploidy embryos with the help of it we can analyze the possible role of all the genes involved in imprinting processes as well as the role the paternal genome plays during early embryo development by comparing them with fertilized embryos. Several methods are able to induce parthenogenetic activation through the elevation of cytoplasmic free calcium in oocytes. But one common, universal method or activation agents has not been developed for all species because the process is highly specific for each species. Therefore, activation step for each species need to be optimized accordingly. This review describes the general method of activation of mammalian oocytes and their genomic imprinting analysis.

Share and Cite:

Kharche, S. and Birade, H. (2013) Parthenogenesis and activation of mammalian oocytes for in vitro embryo production: A review. Advances in Bioscience and Biotechnology, 4, 170-182. doi: 10.4236/abb.2013.42025.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Graham, C.F. (1974) The production of parthenogenetic mammalian embryos and their use in biological research. Biological Reviews, 49, 399-422. doi:10.1111/j.1469-185X.1974.tb01085.x
[2] Paffoni, A., Brevini, T.A.L. and Gandolfi, F.R.G. (2008) Parthenogenetic activation: Biology and applications in the ART laboratory. Placenta, 29, S121-S125. doi:10.1016/j.placenta.2008.08.005
[3] Pincus, G. and Enzman, E.V. (1936) The comparative behaviour of mammalian eggs in vivo and in vitro. II. The activation of tubal eggs in the rabbit. Journal of Experimental Zoology, 73, 195-208. doi:10.1002/jez.1400730202
[4] Pincus, G. and Shapiro, H. (1940) Further studies on the parthenogenetic activation of rabbit eggs. Proceedings of the National Academy of Sciences of the United States of America, 26, 163-165. doi:10.1073/pnas.26.3.163
[5] Kono, T., et al. (2002) Mouse parthenogenetic embryos with monoallelic H19 expression can develop to day 17.5 of gestation. Developmental Biology, 243, 294-300. doi:10.1006/dbio.2001.0561
[6] Kharche, S.D., et al. (2011) Factors influencing in-vitro embryo production efficiency of caprine oocytes: A review. Indian Journal of Animal Sciences, 81, 344-361.
[7] Gordon, I. (2011) Potential application of cattle in-vitro fertilization in commercial practice and research. Embryo Transfer Newsletter, 9, 4-9.
[8] Hansen, P.J. and Block, B.J. (2004) Towards an embryocentric world: The current and potential uses of embryo technologies in dairy production. Reproduction, Fertility and Development, 16, 1-14. doi:10.1071/RD03073
[9] Pugh, P.A., et al. (1991) Developmental ability of in vitro matured sheep oocytes collected during the nonbreeding season and fertilized in vitro with frozen ram semen. Theriogenology, 36, 771-778. doi:10.1016/0093-691X(91)90342-B
[10] Kharche, S.D., et al. (2008) Birth of a female kid from in vitro matured and fertilized caprine oocytes. Indian Journal of Animal Sciences, 78, 680-685.
[11] Datta, T.K., Goswami, S.L. and Das, S.K. (1993) Comparative efficiency of three oocyte recovery methods from sheep ovaries. Indian Journal of Animal Sciences, 63, 1178-1179.
[12] Kharche, S.D., et al. (2008) Effect of somatic cells co-culture on cleavage and development of in vitro fertilized embryos. Indian Journal of Animal Sciences, 78, 686-692.
[13] Pawshe, C.H., Totey, S.M. and Jain, S.K. (1994) A comparison of three methods of recovery of goat oocytes for in vitro maturation and fertilization. Theriogenology, 42, 117-125. doi:10.1016/0093-691X(94)90668-9
[14] Yadav, E.N., et al. (2007) Comparative efficiency of different technique for oocyte recovery from prepubertal goat ovaries. Indian Journal of Animal Sciences, 77, 988990.
[15] Moor, R.M. and Seamash, R.F. (1986) Cell signaling permeability and microvasculatory changes during antral follicle development in mammals. Journal of Dairy Science, 69, 927-943. doi:10.3168/jds.S0022-0302(86)80482-9
[16] Kharche, S.D., et al. (2011) Birth of twin kids following transfer of in-vitro produced goat embryos. Indian Journal of Animal Sciences, 81, 1132-1134.
[17] Rahman, A.N.M.A., Abdullah, R.B. and Wan-Khadijah, W.E. (2008) In vitro maturation of oocytes with special reference to goat: A review. Biotechnology, 7, 599-611. doi:10.3923/biotech.2008.599.611
[18] Teotia, A.G., Sharma, T. and Majumdar, A.C. (2001) Fertilization and development of Caprine oocytes matured over granulosa cell monolayers. Small Ruminant Research, 40, 165-177. doi:10.1016/S0921-4488(01)00168-7
[19] Pawshe, C.H., et al. (1996) Comparisons of various maturation treatments on in-vitro maturation of goat oocytes and their early embryonic development and cell numbers. Theriogenology, 46, 971-982. doi:10.1016/S0093-691X(96)00261-0
[20] Izquierdo, D., Villamediana, P. and Paramio, M.T. (1999) Effect of culture media on embryo development from pre pubertal goat IVM-IVF oocytes. Theriogenology, 52, 847861. doi:10.1016/S0093-691X(99)00177-6
[21] Yadav, P., et al. (2010) Effect of Hormones, EGF and ?-Mercaptoethanol on in vitro maturation of caprine oocytes. Reproduction, Fertility and Development, 22, 337. doi:10.1071/RDv22n1Ab361
[22] Kharche, S.D., et al. (2006) In vitro maturation of caprine oocytes in different concentrations of estrous goat serum. Small Ruminant Research, 64, 186-189. doi:10.1016/j.smallrumres.2005.04.005
[23] Park, K.W., Iga, K. and Niwa, K. (1997) Exposure of bovine oocytes to EGF during maturation allows them to develop to blastocysts in a chemically-defined medium. Theriogenology, 48, 1127-1135. doi:10.1016/S0093-691X(97)00345-2
[24] Guler, A., et al. (2000) Effect of growth factors, EGF and IGF-I, and estradiol on in vitro maturation of sheep oocytes. Theriogenology, 54, 209-218. doi:10.1016/S0093-691X(00)00342-3
[25] Abeydeera, L.R., et al. (1998) Presence of epidermal growth factor during in vitro maturation of pig oocytes and embryo culture can modulate blastocyst development after in vitro fertilization. Molecular Reproduction and Development, 51, 395-401. doi:10.1002/(SICI)1098-2795(199812)51:4<395::AID-MRD6>3.0.CO;2-Y
[26] Nandi, S., et al. (2003) Developmental competence and post-thaw survivability of buffalo embryos produced in vitro: effect of growth factors in oocyte maturation medium and of embryo culture system. Theriogenology, 60, 1621-1631. doi:10.1016/S0093-691X(03)00148-1
[27] Suo-Feng, Ma., et al. (2005) Parthenogenetic activation of mouse oocytes by strontium chloride: A search for the best conditions. Theriogenology, 64, 1142-1157. doi:10.1016/j.theriogenology.2005.03.002
[28] Chien-Tsung, L., et al. (2002) Parthenogenesis of rabbit oocytes activated by different stimuli. Animal Reproduction Science, 70, 67-276.
[29] Silva, R.T.D., et al. (2010) Parthenogenetic development of domestic cat oocytes treated with ionomycin, cycloheximide, roscovitine and strontium. Theriogenology, 74, 596-601. doi:10.1016/j.theriogenology.2010.03.010
[30] Wani, N.A. (2008) Chemical activation of in vitro matured dromedary camel (Camelus dromedarius) oocytes: Optimization of protocols. Theriogenology, 69, 591-602. doi:10.1016/j.theriogenology.2007.11.011
[31] Ryeul, L.S., et al. (2007) The parthenogenetic activation of canine oocytes with Ca EDTA by various culture periods and concentrations. Theriogenology, 67, 698-703. doi:10.1016/j.theriogenology.2006.10.002
[32] Campbell, K.H.S., et al. (2007) Somatic cell nuclear transfer: Past, present and future perspectives. Theriogenology, 68S, S214-S231. doi:10.1016/j.theriogenology.2007.05.059
[33] Mishra, V., Misra, A.K. and Sharma, R. (2008) A comparative study of parthenogenic activation and in vitro fertilization of bubaline oocytes. Animal Reproduction Science, 103, 249-259. doi:10.1016/j.anireprosci.2006.12.019
[34] Lin, L. and Moor, R.M. (1997) Factors affecting electrical activation of porcine oocyte matured in vitro. Animal Reproduction Science, 48, 67-80. doi:10.1016/S0378-4320(97)00044-4
[35] Eppig, J.J. (1996) Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reproduction, Fertility and Development, 8, 485-489. doi:10.1071/RD9960485
[36] Kharche, S.D., et al. (2010) Influence of defined and complex culture media on fertilization and embryonic development of in vitro matured caprine oocytes. Reproduction, Fertility and Development, 22, 227. doi:10.1071/RDv22n1Ab281
[37] Wang, Z.G., Xu, Z.R. and Yu, S.D. (2007) Effect of oocyte collection techniques and maturation media on in vitro maturation and subsequent embryo development in Boer goat. Czech Journal of Animal Science, 52, 21-25.
[38] Wassarman, P.M. (1988) The mammalian ovum. In: Knobil, E. and Neill, J., Eds., The Physiology of Reproduction, Raven Press, New York, 69-102.
[39] Szybek, K. (1972) In vitro maturation of oocytes from sexually immature mice. Journal of Endocrinology, 54, 527-528. doi:10.1677/joe.0.0540527
[40] Sorensen, R.A. and Wassarman, P.M. (1976) Relationship between growth and meiotic maturation of the mouse oocyte. Developmental Biology, 50, 531-536. doi:10.1016/0012-1606(76)90172-X
[41] Motlik, J. (1989) Cytoplasmic aspects of oocyte growth and maturation in mammals. Journal of Reproduction and Fertility, 38, 17-25.
[42] Hirao, Y., et al. (1994) In vitro growth and maturation of pig oocytes. Journal of Reproduction and Fertility, 100, 333-339. doi:10.1530/jrf.0.1000333
[43] Wu, J., Emery, B.R. and Carrell, D.T. (2001) In vitro growth, maturation, fertilization, and embryonic development of oocytes from porcine preantral follicles. Biology of Reproduction, 64, 375-381. doi:10.1095/biolreprod64.1.375
[44] Sedmikova, M., et al. (2003) Induction and activation of meiosis and subsequent parthenogenetic development of growing pig oocytes using calcium ionophore A23187. Theriogenology, 60, 1609-1620. doi:10.1016/S0093-691X(03)00079-7
[45] Seidler, N.W., et al. (1989) Cyclopiazonic acid is a specific inhibitor of Ca2+-ATPase of sarcoplasmic reticulum. Journal of Biological Chemistry, 264, 17816-17823.
[46] Mason, M.J., Garcia-Rodriguez, C. and Grinstein, S. (1991) Coupling between intracellular Ca2+ stores and Ca2+ permeability of the plasma membrane: comparison of effect of thapsigargin, 2,5-di-(tert-butyl)-1,4-hydro-quinone, and cyclopiazonic acid in rat thymic lymphocytes. Journal of Biological Chemistry, 266, 20856-20862.
[47] Prochazka, R., et al. (1993) Parthenogenetic development of activated in vitro matured bovine oocytes. Theriogenology, 39, 1025-1032. doi:10.1016/0093-691X(93)90003-N
[48] Collas, P., et al. (1993) Electrically induced calcium elevation, activation, and parthenogenetic development of bovine oocytes. Molecular Reproduction and Development, 34, 212-223. doi:10.1002/mrd.1080340214
[49] Nagai, T. (1987) Parthenogenetic activation of cattle follicular oocytes in vitro with ethanol. Gamete Research, 16, 243-249. doi:10.1002/mrd.1120160306
[50] Fukui, Y., et al. (1992) Parthenogenetic development of bovine oocytes treated with ethanol and cytochalasin B after in vitro maturation. Molecular Reproduction and Development, 33, 357-362. doi:10.1002/mrd.1080330318
[51] Presicce, G.A. and Yang, X. (1994) Parthenogenetic development of bovine oocytes matured in vitro for 24 hr and activated by ethanol and cycloheximide. Molecular Reproduction and Development, 38, 380-385. doi:10.1002/mrd.1080380405
[52] Ware, C.B., et al. (1989) Age dependence of bovine oocyte activation. Gamete Research, 22, 265-275. doi:10.1002/mrd.1120220304
[53] Liu, L., Ju, J.C. and Yang, X. (1998) Parthenogenetic development and protein patterns of newly matured bovine oocytes after chemical activation. Molecular Reproduction and Development, 49, 298-307. doi:10.1002/(SICI)1098-2795(199803)49:3<298::AID-MRD10>3.0.CO;2-T
[54] Presicce, G.A. and Yang, X. (1994) Nuclear dynamics of parthenogenesis of bovine oocytes matured in vitro for 20 and 40 hours and activated with combined ethanol and cycloheximide treatment. Molecular Reproduction and Development, 37, 61-68. doi:10.1002/mrd.1080370109
[55] Saeki, K., et al. (1997) Developmental capacity of bovine oocytes following inhibition of meiotic resumption by cycloheximide or 6-dimethylaminopurine. Theriogenology, 48, 1161-1172. doi:10.1016/S0093-691X(97)00349-X
[56] Ahn, G.J., Lee, B.C. and Hwang, W.S. (2001) Effect of IP3 and ryanodine treatments on the development of bovine parthenogenetic and reconstructed embryos. Journal of Veterinary Science, 2, 131-137.
[57] Susko-Parrish, J.L., et al. (1994) Inhibition of protein kinases after an induced calcium transient causes transition of bovine oocytes to embryonic cycles without meiotic completion. Developmental Biology, 166, 729-739. doi:10.1006/dbio.1994.1351
[58] Winger, Q.A., et al. (1997) Bovine parthenogenesis is characterized by abnormal chromosomal complements: Implications for maternal and paternal co-dependence during early bovine development. Developmental Genetics, 21, 160-166. doi:10.1002/(SICI)1520-6408(1997)21:2<160::AID-DVG5>3.0.CO;2-5
[59] Meo, S.C., Leal, C.L. and Garcia, J.M. (2004) Activation and early parthenogenesis of bovine oocytes treated with ethanol and strontium. Animal Reproduction Science, 81, 35-46. doi:10.1016/j.anireprosci.2003.09.004
[60] Rho, G.J., et al. (1998) Sperm and oocyte treatments to improve the formation of male and female pronuclei and subsequent development following intracytoplasmic sperm injection into bovine oocytes. Biology of Reproduction, 59, 918-924. doi:10.1095/biolreprod59.4.918
[61] Hou, Y., et al. (2009) Improved parthenogenetic development of vitrified-warmed bovine oocytes activated with 9% ethanol plus 6-DMAP. Theriogenology, 72, 643-649. doi:10.1016/j.theriogenology.2009.04.020
[62] Yang, X., et al. (1993) Nuclear transfer in cattle: Effect of nuclear donor cells, cytoplast age, co-culture, and embryo transfer. Molecular Reproduction and Development, 35, 29-36. doi:10.1002/mrd.1080350106
[63] Shi, Z., Jiang, S. and Yang, X. (1993) Synergistic effect of A23187 and cycloheximide allows effective activation of freshly matured bovine oocytes. Theriogenology, 38, 309. doi:10.1016/0093-691X(93)90164-Z
[64] First, N.L., et al. (1992) Use of in vitro matured oocytes 24 hr of age in bovine nuclear transfer. Theriogenology, 37, 211. doi:10.1016/0093-691X(92)90280-5
[65] Lcibfried-Rutledge, M.L., et al. (1992) Processing of donated nucleus and timing of post-activation events differ between recipient oocytes at 24 or 42 hr of age. Theriogenology, 37, 244. doi:10.1016/0093-691X(92)90313-G
[66] Nagai, T. (1992) Development of bovine in vitro-matured follicular activated with ethanol. Theriogenology, 37, 869875. doi:10.1016/0093-691X(92)90048-V
[67] Maure, R.R. and Foote, R.H. (1971) Maternal aging and embryonic mortality in the rabbit: 1. Repeated superovulation. embryo culture, and transfer. Journal of Reproduction and Fertility, 25, 329-341. doi:10.1530/jrf.0.0250329
[68] Seidel, G.E., Jr., Bowen, R.A. and Kane, M.T. (1976) In vitro fertilization, culture, and transfer of rabbit ova. Fertility and Sterility, 27, 861-870.
[69] Aoyagi, Y., et al. (1994) Unaged bovine oocytes successfully develop to blastocysts after parthenogenic activation or nuclear transfer. Theriogenology, 41, 157. doi:10.1016/S0093-691X(05)80067-6
[70] Tanaka, H. and Kanagawa, H. (1997) Influence of combined activation treatments on the success of bovine nuclear transfer using young or aged oocytes. Animal Reproduction Science, 49, 113-123. doi:10.1016/S0378-4320(97)00070-5
[71] Whittingham, D.G. and Siracusa, G. (1978) The involvement of calcium in the activation of ammalian oocytes. Experimental Cell Research, 113, 311-317. doi:10.1016/0014-4827(78)90371-3
[72] Cuthbertson, K.S., Whittingham, D.G. and Cobbold, P.H. (1981) Free Ca2+ increases in exponential phases during mouse oocyte activation. Nature, 294, 754-757. doi:10.1038/294754a0
[73] Loi, P., et al. (1998) Development of parthenogenetic and cloned ovine embryos: Effect of activation protocols. Biology of Reproduction, 58, 1177-1187. doi:10.1095/biolreprod58.5.1177
[74] Vitullo, A.D. and Ozi, J.P. (1992) Repetitive calcium stimuli drive meiotic resumption and pronuclear development during mouse oocyte activation. Developmental Biology, 151, 128-136. doi:10.1016/0012-1606(92)90220-B
[75] Nussbaum, D.J. and Prather, R.S. (1995) Differential effects of protein synthesis inhibitors on porcine oocyte activation. Molecular Reproduction and Development, 41, 70-75. doi:10.1002/mrd.1080410111
[76] Alberio, R., et al. (2001) Mammalian oocyte activation: lessons from the sperm and implications for nuclear transfer. International Journal of Developmental Biology, 45, 797-809.
[77] Malcuit, C., Kurokawa, M. and Fissore, R.A. (2006) Calcium oscillation and mammalian egg activation. Journal of Cellular Physiology, 206, 565-573. doi:10.1002/jcp.20471
[78] Ducibella, T., et al. (2002) Eggto-embryo transition is driven by differential responses to Ca2+ oscillation number. Developmental Biology, 250, 280-291. doi:10.1006/dbio.2002.0788
[79] Ozil, J.P., et al. (2005) Egg activation events are regulated by the duration of a sustained [Ca2+] cyt signal in the mouse. Developmental Biology, 282, 39-54. doi:10.1016/j.ydbio.2005.02.035
[80] Aoki, F., Hara, K.T. and Schultz, R.M. (2003) Acquisition of transcriptional competence in the 1-cell mouse embryo: requirement for recruitment of maternal mRNAs. Molecular Reproduction and Development, 64, 270-274. doi:10.1002/mrd.10227
[81] Bos-Mikich, A., Swann, K. and Whittingham, D.G. (1995) Calcium oscillations and protein synthesis inhibition synergistically activate mouse oocytes. Molecular Reprodu tion and Development, 41, 84-90. doi:10.1002/mrd.1080410113
[82] Meo, S.C., et al. (2005) Use of strontium for bovine oocyte activation. Theriogenology, 63, 2089-2102. doi:10.1016/j.theriogenology.2004.08.012
[83] Hosseini, S.M., et al. (2008) Optimized combined electrical-chemical parthenogenetic activation for in vitro matured bovine oocytes. Animal Reproduction Science, 108, 122-133. doi:10.1016/j.anireprosci.2007.07.011
[84] Parnpai, R. and Tasripoo, K. (2003) Effect of different activation protocols on the development of cloned swamp buffalo embryos derived from granulosa cells. Theriogenology, 59, 279.
[85] Ilyin, V. and Parker, I. (1992) Effects of alcohols on responses evoked by inositol trisphosphate in Xenopus oocytes. Journal of Physiology, 448, 339-354.
[86] Saikhun, J., et al. (2004) Development of swamp buffalo (Bubalus bubalis) embryo after parthenogenic activation and nuclear transfer using serum fed or starved fetal fibroblasts. Reproduction Nutrition Development, 44, 6578. doi:10.1051/rnd:2004017
[87] Taneja, M. and Sing, G. (1994) Parthenogenic development of in vitro matured oocytes of buffalo (Bubalus bubalis) Theriogenology, 41, 312. doi:10.1016/S0093-691X(05)80222-5
[88] Kitiyanant, Y., et al. (2003) Parthenogenetic development of buffalo oocytes after electrical and chemical activation. Theriogenology, 59, 475.
[89] Saikhun, J., et al. (2004) Development of swamp buffalo (Bubalus bubalis) embryo after parthenogenic activation and nuclear transfer using serum fed or starved fetal fibroblasts. Reproduction Nutrition Development, 44, 6578. doi:10.1051/rnd:2004017
[90] Gasparrini, B., et al. (2004) Chemical activation of buffalo (Bubalus bubalis) oocytes by different methods: Effects of aging on post-parthenogenetic development. Theirogenology, 62, 1627-1637
[91] Totey, S.M., et al. (1992) In vitro maturation, fertilization and development of follicular oocytes from buffalo (Bubalus bubalis). Journal of Reproduction and Fertility, 95, 597-607. doi:10.1530/jrf.0.0950597
[92] Zicarelli, L. and Gasparrini, B. (2004) Principles of invitro embryo production in buffalo species. Proceedings of the 7th World Buffalo Congress, Manilla, 20-23, 157172.
[93] Ongeri, E.M., et al. (2001) Development of goat embryos after in vitro fertilization and parthenogenetic activation by different methods. Theriogenology, 55, 1933-1945. doi:10.1016/S0093-691X(01)00534-9
[94] Guo, J., et al. (2010) In vitro development of goat parthenogenetic and somatic cell nuclear transfer embryos derived from different activation protocols. Zygote, 18, 5159. doi:10.1017/S0967199409005504
[95] Kharche, S.D., et al. (2011) Parthenogenetic embryo production by ethanol activation of matured caprine oocytes. In: XXVII Annual Convention of ISSAR and National symposium on Reproductive Biotechnologies for Augmenting Fertility and Conservation of Animal Species with Special Reference to North Eastern Hill Region, Aizawl, 27th-29th September 2011, 14.
[96] Jena, M.K., et al. (2012) Handmade cloned and parthenogenetic goat embryos—A comparison of different culture media and donor cells. Small Ruminant Research, in press. doi:10.1016/j.smallrumres.2012.03.001
[97] Bogliolo, L., et al. (2000) Activity of maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) after parthenogenetic activation of ovine oocytes. Cloning, 2, 185-196. doi:10.1089/152045500454744
[98] Alexander, B., et al. (2006) The effect of 6 dimethyl-aminopurine (6-DMAP) and cycloheximide (CHX) on the development and chromosomal complement of sheep parthenogenetic and nuclear transfer embryos. Molecular Reproduction and Development, 73, 20-30. doi:10.1002/mrd.20372
[99] Ptak, G., et al. (2006) Leukaemia inhibitory factor enhances sheep fertilization in vitro via an influence on the oocyte. Theriogenology, 65, 1891-1899. doi:10.1016/j.theriogenology.2005.10.018
[100] Grazul-Bilska Anna, T. et al. (2008) Creation of parthenogenetic sheep embryos: Preliminary study sheep. Research Reports, 15-18.
[101] Matsushita, S., et al. (2004) Effect of low temperature bovine ovary storage on the maturation rate and developmental potential of follicular oocytes after in vitro fertilization, parthenogenetic activation, or somatic cell nucleus transfer. Animal Reproduction Science, 84, 293301. doi:10.1016/j.anireprosci.2004.02.008
[102] Shirazi, A., et al. (2009) The Effect of the duration of in vitro maturation (IVM) on parthenogenetic development of ovine oocytes. American Journal of Molecular Biology, 1, 181-191
[103] Pivko, J., et al. (2004) Ultrastructural morphometry of precompacted bovine embryos produced in vivo and in vitro after activation by electric pulse AC/DC. General Physiology and Biophysics, 23, 101-112.
[104] Edwards, R.G. (2007) The significance of parthenogenetic virgin mothers in bonnethead sharks and mice. Reproductive BioMedicine Online, 15, 12-15. doi:10.1016/S1472-6483(10)60684-0
[105] Surani, M.A., Barton, S.C. and Norris, M.L. (1986) Nuclear transplantation in the mouse: Heritable differences between parental genomes after activation of the embryonic genome. Cell, 45, 127-136. doi:10.1016/0092-8674(86)90544-1
[106] Kure-bayashi, S., et al. (2000) Successful implantation of in vitro-matured, electro-activated oocytes in the pig. Theriogenology, 53, 1105-1119.
[107] Kaufman, M.H., Barton, S.C. and Surani, M.A. (1977) Normal postimplantation development of mouse parthenogenetic embryos to the forelimb bud stage. Nature, 265, 53-55. doi:10.1038/265053a0
[108] Surani, M.A., Barton, S.C. and Norris, M.L. (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature, 308, 548-550. doi:10.1038/308548a0
[109] Ozil, J.P. (1990) The parthenogenetic development of rabbit oocytes after repetitive pulsatile electrical stimulation. Development, 109, 117-127.
[110] Marshall, V.S., Wilton, L.J. and Moore, H.D. (1998) Parthenogenetic activation of marmoset (Callithrix jacchus) oocytes and the development of marmoset parthenogenones in vitro and in vivo. Biology of Reproduction, 59, 1491-1497. doi:10.1095/biolreprod59.6.1491
[111] Surani, M.A. and Barton, S.C. (1983) Development of gynogenetic eggs in the mouse: Implications for parthenogenetic embryos. Science, 222, 1034-1036. doi:10.1126/science.6648518
[112] Latham, K.E., et al. (2002) Comparison of gene expression during preimplantation development between diploid and haploid mouse embryos. Biology of Reproduction, 67, 386-392. doi:10.1095/biolreprod67.2.386
[113] Kim, N.H., et al. (1997) Blastocoel formation and cell allocation to the inner cell mass and trophectoderm in haploid and diploid pig parthenotes developing in vitro. Zygote, 5, 365-370. doi:10.1017/S0967199400003944
[114] Henery, C.C. and Kaufman, M.H. (1992) Cleavage rate of haploid and diploid parthenogenetic mouse embryos during the preimplantation period. Molecular Reproduction and Development, 31, 258-263. doi:10.1002/mrd.1080310406
[115] Hao, Y., et al. (2004) Apoptosis in parthenogenetic preimplantation porcine embryos. Biology of Reproduction, 70, 1644-1649. doi:10.1095/biolreprod.103.026005
[116] Jeong, Y.J., et al. (2005) Haploidy influences Bak and Bcl-xL mRNA expression and increases incidence of apoptosis in porcine embryos. Zygote, 13, 17-21. doi:10.1017/S0967199405003096
[117] Pratt, H.P. (1982) Compaction of the mouse embryo: An analysis of its components. Journal of Embryology & Experimental Morphology, 70, 113-132.
[118] Kono, T., et al. (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature, 428, 860-864. doi:10.1038/nature02402
[119] Howlett, S.K., et al. (1989) Genomic imprinting in the mouse. Developmental Biology, 6, 59-77.
[120] Ferguson-Smith, A.C. and Surani, M.A. (2001) Imprinting and the epigenetic asymmetry between parental genomes. Science, 293, 1086-1089. doi:10.1126/science.1064020
[121] Miyoshi, N., et al. (2006) The continuing quest to comprehend genomic imprinting. Cytogenet. Genome Research, 113, 6-11. doi:10.1159/000090808
[122] Tremblay, K.D., Duran, K.L. and Bartolomei, M.S. (1997) A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Molecular and Cellular Biology, 17, 43224329.
[123] Kaffer, C.R., et al. (2000) A transcriptional insulator at the imprinted H19/Igf2 locus. Genes & Development, 14, 1908-1919.
[124] Yang, Y., et al. (2003) Epigenetic regulation of Igf2/H19 imprinting at CTCF insulator binding sites. Journal of Cellular Biochemistry, 90, 1038-1055. doi:10.1002/jcb.10684
[125] Thorvaldsen, J.L., et al. (2006) Developmental profile of H19 differentially methylated domain (DMD) deletion alleles reveals multiple roles of the DMD in regulating allelic expression and DNA methylation at the imprinted H19/Igf2 locus. Molecular and Cellular Biology, 26, 12451258. doi:10.1128/MCB.26.4.1245-1258.2006
[126] Olek, A. and Walter, J. (1997) The pre-implantation ontogeny of the H19 methylation imprint. Nature Genetics, 17, 275-276. doi:10.1038/ng1197-275
[127] Warnecke, P.M., et al. (1998) Bisulfite sequencing in preimplantation embryos: DNA methylation profile of the upstream region of the mouse imprinted H19 gene. Genomics, 51, 182-190. doi:10.1006/geno.1998.5371
[128] Borghol, N., et al. (2006) Epigenetic status of the H19 locus in human oocytes following in vitro maturation. Genomics, 87, 417-426. doi:10.1016/j.ygeno.2005.10.008
[129] Lucifero, D., et al. (2002) Methylation dynamics of imprinted genes in mouse germ cells. Genomics, 79, 530538. doi:10.1006/geno.2002.6732
[130] Geuns, E., et al. (2003) Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos. Human Molecular Genetics, 12, 2873-2879. doi:10.1093/hmg/ddg315
[131] Arnaud, P. and Feil, R. (2005) Epigenetic deregulation of genomic imprinting in human disorders and following assisted reproduction, birth defects. Research Part C Embryo Today, 75, 81-97.
[132] Gebert, C., et al. (2006) The bovine IGF2 gene is differentially methylated in oocyte and sperm DNA. Genomics, 88, 222-229. doi:10.1016/j.ygeno.2006.03.011
[133] Mann, M.R., et al. (2003) Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biology of Reproduction, 9, 902-914. doi:10.1095/biolreprod.103.017293
[134] Li, T., et al. (2005) IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Molecular Human Reproduction, 11, 631-640. doi:10.1093/molehr/gah230
[135] Kang, Y.K., et al. (2001) Typical demethylation events in cloned pig embryos. Clues on species-specific differences in epigenetic reprogramming of a cloned donor genome. Journal of Biology and Chemistry, 276, 39980-39984. doi:10.1074/jbc.M106516200
[136] Kang, Y.K., Lee, K.K. and Han, Y.M. (2003) Reprogramming DNAmethylation in the preimplantation stage: Peeping with Dolly’s eyes. Current Opinion in Cell Biology, 15, 290-295. doi:10.1016/S0955-0674(03)00031-0
[137] Li, J.Y., et al. (2004) Timing of establishment of paternal methylation imprints in the mouse. Genomics, 84, 952960. doi:10.1016/j.ygeno.2004.08.012
[138] Sun, Q., et al. (2008) Diploid parthenogenetic embryos adopt a maternal-type methylation pattern on both sets of maternal chromosomes. Genomics, 91, 121-128. doi:10.1016/j.ygeno.2007.10.005

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.