Modified Bow-Tie Nanoparticles Operating in the Visible and Near Infrared Frequency Regime

Abstract

In this contribution electromagnetic properties of traditional and modified bow-tie nanoparticles are investigated. The modified bow-tie particles consist of a pair of opposing metallic truncated triangles, embedded in a dielectric environment, with a rectangular dielectric hole engraved on the metallic structure. New analytical models for both structures are developed in order to describe the nanoparticles electromagnetic behavior in terms of resonant wavelength position, magnitude and amplitude width for the extinction cross-section. Analytical results are compared to the numerical values and to the experimental ones existing in literature. Good agreement among them is obtained. Then, the structures are analyzed in terms of sensitivity properties. Results reveal that the modified bow-tie structure can be applied for biomedical applications.

Share and Cite:

Iovine, R. , Spada, L. and Vegni, L. (2013) Modified Bow-Tie Nanoparticles Operating in the Visible and Near Infrared Frequency Regime. Advances in Nanoparticles, 2, 21-27. doi: 10.4236/anp.2013.21005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Moores and F. Goettmann, “The Plasmon Band in Noble Metal Nanoparticles: An Introduction to Theory and Applications,” New Journal of Chemistry, Vol. 30, No. 8, 2006, pp. 1121-1132. doi:10.1039/b604038c
[2] W. Cai, T. Gao, H. Hong and J. Sun, “Applications of Gold Nanoparticles in Cancer Nanotechnology,” Nano technology, Science and Applications, Vol. 1, 2008, pp. 17-32.
[3] J. C. Riboh, A. J. Haes, A. D. McFarland, C. Ranjit and R. P. Van Duyne, “A Nanoscale Optical Biosensor: Real Time Immunoassay and Nanoparticle Adhesion,” The Journal of Physical Chemistry B, Vol. 107, No. 8, 2003, pp. 1772 1780. doi:10.1021/jp022130v
[4] J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin and R. L. Letsinger, “DNA Directed Synthesis of Binary Nanoparticle Network Materials,” Journal of American Chemical Society, Vol. 120, No. 48, 1998, pp. 12674 12675. doi:10.1021/ja982721s
[5] E. M. Larsson, J. Alegret, M. Kall and D. S. Sutherland, “Sensing Characteristics of NIR localized Surface Plas mon Resonances in Gold Nanoring for Application as Ul trasensitive Biosensors,” Nano Letters, Vol. 5, No. 5, 2007, pp. 1256-1263. doi:10.1021/nl0701612
[6] R. Bukasov, T. A. Ali, P. Nordlander and J. S. Shumaker Parry, “Probing the Plasmonic Near-Field of Gold Nano crescent Antennas,” ACS Nano, Vol. 4, No. 11, 2010, pp. 6639-6650. doi:10.1021/nn101994t
[7] W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang and J. T. Groves, “A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces,” Nano Letters, Vol. 9, No. 5, 2009, pp. 2077-2082. doi:10.1021/nl900513k
[8] H. M. Hiep, T. Endo, K. Kerman, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A Localized Surface Plasmon Resonance Based Immunosensor for the Detection of Casein in Milk,” Science and Technology of Advanced Materials, Vol. 8, No. 4, 2007, pp. 331-338. doi:10.1016/j.stam.2006.12.010
[9] D. Yelin, D. Oron, S. Thiberge, E. Moses, Y. Silberberg and I. Willner, “Multiphoton Plasmon-Resonance Microscopy,” Optics Express, Vol. 11, No. 12, 2003, pp. 1385-1391. doi:10.1364/OE.11.001385
[10] K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan and R. Richards-Kortum, “Real-Time Vital Optical Imaging of Precancer Using Anti-Epidermal Growth Factor Receptor Antibodies Conjugated to Gold Nanoparticles,” Cancer Research, Vol. 63, No. 9, 2003, pp. 1999 2004.
[11] M. Y. Sham, H. Xu and R. Cromer, “SERS Nanoparticles: a New Optical Detection Modality for Cancer Diagnosis,” Nanomedicine, Vol. 2, No. 5, 2007, pp. 725-734. doi:10.2217/17435889.2.5.725
[12] L. Sun, C. Yu and J. Irudayaraj, “Raman Multiplexers for Alternative Gene Splicing,” Analytical Chemistry, Vol. 80, No. 9, 2008, pp. 3342-3349. doi:10.1021/ac702542n
[13] X. Huang, P. K. Jain, I. H. El-Sayed and M. A. El-Sayed, “Plasmonic Photothermal Therapy (PPTT) Using Gold Nanoparticles,” Lasers in Medical Science, Vol. 23, No. 3, 2008, pp. 217-228. doi:10.1007/s10103-007-0470-x
[14] P. K. Jain, K. S. Lee, I. H. El-Sayed and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine,” Journal of Physical Chemistry B, Vol. 110, No. 14, 2006, pp. 7238-7248. doi:10.1021/jp057170o
[15] W. Ding, R. Bachelot, S. Kostcheev, P. Royer and R. E. de Lamaestre, “Surface Plasmon Resonances in Silver Bowtie Nanoantennas with Varied Bow Angles,” Journal of Applied Physics, Vol. 108, No. 12, 2010, pp. 124314. doi:10.1063/1.3524504
[16] H. Fischer and O. J. F. Martin, “Engineering the Optical Response of Plasmonic Nanoantennas,” Optics Express, Vol. 15, No. 12, pp. 9144-9154.
[17] Y. Zhao, N. Engheta and A. Alù, “Effects of Shape and Loading of Optical Nanoantennas on Their Sensitivity and Radiation Properties,” Journal of the Optical Society of America B, Vol. 28, No. 5, 2011, pp. 1266-1274. doi:10.1364/JOSAB.28.001266
[18] C. Bohren and D. Huffmann, “Absorption and Scattering of Light by Small Particles,” John Wiley, New York, 1983.
[19] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Physical Review B, Vol. 6, No.12, 1972, pp. 4370-4379. doi:10.1103/PhysRevB.6.4370
[20] J. G. Van Bladel, “Electromagnetic Fields,” John Wiley & Sons, Hoboken, 2007. doi:10.1002/047012458X
[21] CST Computer Simulation Technology, www.cst.com.
[22] A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck and S. Cabrini, “Functional Plasmonic Antenna Scanning Probes Fabricated by Induced-Deposition Mask Lithography,” Nanotechnology, Vol. 21, No. 6, 2010, pp. 1-6. doi:10.1088/0957-4484/21/6/065306
[23] A. D. McFarland and R. P. Van Duyne, “Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity,” Nano Letters, Vol. 3, No. 8, 2003, pp. 1057-1062. doi:10.1021/nl034372s
[24] R. Morarescu, H. Shen, R. A. L. Vallée, B. Maes, B. Kolaric and P. Damman, “Exploiting the Localized Surface Plasmon Modes in Gold Triangular Nanoparticles for Sensing Applications,” Journal of Materials Chemistry, Vol. 22, No. 23, 2012, pp. 11537-11542. doi:10.1039/c2jm30944k

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.