Difference in Structural Relaxation Times of Inner Surface and Inner Bulk Region of Silica Glass Arc Tube

Abstract

The fictive temperature and structural relaxation of a silica glass arc tube were investigated to elucidate the origin of cracking in the arc tubes used in high-intensity discharge lamps for vacuum ultraviolet light sources. The structural relaxation time near the inner surface was decreased much more than that in the inner bulk region, resulting in a large difference in the fictive temperature between these two areas at high-intensity discharge lamp operating temperatures. This difference should induce strain in the silica glass network. On the basis of our results, we suggest ways to avoid cracking and extend the lifetime of high-intensity discharge lamps.

Share and Cite:

T. Honma, N. Tamura, K. Saito and E. Sekiya, "Difference in Structural Relaxation Times of Inner Surface and Inner Bulk Region of Silica Glass Arc Tube," New Journal of Glass and Ceramics, Vol. 3 No. 1, 2013, pp. 48-52. doi: 10.4236/njgc.2013.31008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Kakiuchida, K. Saito and A. J. Ikushima, “Fictive-Temperature Dependence of Structural Relaxation in Silica Glass,” Journal of Applied Physics, Vol. 94, No. 3, 2003, pp. 1705-1708. doi:10.1063/1.1587252
[2] R. Le Parc, B. Champagnon, P. Guenot and S. Dubois, “Thermal Annealing and Density Fluctuation in Silica Glass,” Journal of Non-Crystalline Solids, Vol. 293-295, No. 1-2, 2001, pp. 366-369. doi:10.1016/S0022-3093(01)00835-3
[3] K. Saito, N. Ogawa, A. J. Ikushima, Y. Tsurita and K. Yamahara, “Effects of Aluminum Impurity on the Structural Relaxation in Silica Glass,” Journal of Non-Crystalline Solids, Vol. 270, No. 1-3, 2000, pp. 60-65. doi:10.1016/S0022-3093(00)00057-0
[4] H. Kakiuchida, K. Saito and A. J. Ikushima, “Local Structural Relaxation around OH in Silica Glass,” Japanese Journal of Applied Physics, Vol. 41, No. 5A, 2002, pp. 2993-2998. doi:10.1143/JJAP.41.2993
[5] N. Kuzuu, Y. Kokubo, T. Nishimura, I. Serizawa, L. H. Zeng, K. Fujii, M. Yamaguchi, K. Saito and A. J. Ikushima, “Structural Change of OH-Free Fused Quartz Tube by Blowing with Hydrogen-Oxygen Flame,” Journal of Non-Crystalline Solids, Vol. 333, No. 2, 2004, pp. 115-123. doi:10.1016/j.jnoncrysol.2003.10.004
[6] H. Kakiuchida, K. Saito and A. J. Ikushima, “Precise Determination of Fictive Temperature of Silica Glass by Infrared Absorption Spectrum,” Journal of Applied Physics, Vol. 93, No. 1, 2003, pp. 777-779. doi:10.1063/1.1527206
[7] A. Agarwal, K. M. Davis and M. Tomozawa, “A Simple IR Spectroscopic Method for Determining Fictive Temperature of Silica Glasses,” Journal of Non-Crystalline Solids, Vol. 185, No. 1, 1995, pp. 191-198. doi:10.1016/0022-3093(94)00676-8
[8] Y. Ikuta, S. Kikugawa, K. Hino, T. Minematsu and H. Kojima, “Synthetic Silica Glass for Vacuum Ultraviolet Light,” Reports of the Research Laboratory, Vol. 53, 2003, pp. 31-35.
[9] A. Schreiber, B. Kühn, E. Arnold, F.-J. Schilling and H.-D. Witzke, “Radiation Resistance of Quartz Glass for VUV Discharge Lamps,” Journal of Physics D: Applied Physics, Vol. 38, No. 17, 2005, pp. 3242-3250. doi:10.1088/0022-3727/38/17/S28
[10] K. Saito, A. J. Ikushima, T. Kotani and T. Miura, “Improvement of the Ultraviolet-Proof Property of Silica Glass Fibers for ArF Excimer-Laser Applications,” Optics Letters, Vol. 24, No. 23, 1999, pp. 1678-1680. doi:10.1364/OL.24.001678
[11] K. Saito and A. J. Ikushima, “Effects of Fluorine on Structure, Structural Relaxation, and Absorption Edge in Silica Glass,” Journal of Applied Physics, Vol. 91, No. 8, 2002, pp. 4886-4890.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.