Synthesis and Characterization of CuIn2n+1 S3n+2 (with n = 0, 1, 2, 3 and 5) Powders

Abstract

CuIn2n+1 S3n+2 crystals were synthesized by horizontal Bridgman method using high purity copper, indium, sulfur elements. The phases and crystallographic structure of the CuIn2n+1S3n+2 crystals were analyzed by X-ray diffraction (XRD) and the composition of the material powders was determined using the energy dispersive X-ray analysis (EDX). Measurement data revealed that CuIn2n+1S3n+2 materials have not the same structure. In fact, CuInS2 and CuIn3S5 crystallize in the chalcopyrite structure whereas CuIn5S8, CuIn7S11 and CuIn11S17 crystallize in the cubic spinel structure.

 

Share and Cite:

N. Khemiri, D. Abdelkader, B. Khalfallah and M. Kanzari, "Synthesis and Characterization of CuIn2n+1 S3n+2 (with n = 0, 1, 2, 3 and 5) Powders," Open Journal of Synthesis Theory and Applications, Vol. 2 No. 1, 2013, pp. 33-37. doi: 10.4236/ojsta.2013.21003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Pe?a, S. Lugo, M. Calixto-Rodriguez, A. Vázquez, I. Gómez and P. Elizondo, “CuInS2 Thin Films Obtained through the Annealing of Chemically Deposited In2S3-CuS Thin Films,” Applied Surface Science, Vol. 257, No. 6, 2011, pp. 2193-2196. doi:10.1016/j.apsusc.2010.09.071
[2] I. V. Bodnar, “Growth, Transmission Spectra, and Thermal Expansion of CuGa3Se5 Single Crystals,” Inorganic Materials, Vol. 44, No. 2, 2008, pp. 104-109. doi:10.1134/S0020168508020040
[3] F. Bensebaa, C. Durand and A. Aouadou, “A New Green Synthesis Method of CuInS2 and CuInSe2 Nanoparticles and Their Integration into Thin Films,” Journal of Nanoparticle Research, Vol. 12, No. 5, 2010, pp. 1897-1903. doi:10.1007/s11051-009-9752-5
[4] W. Zhang, H. Zeng, Z. Yang and Q. Wang, “New Strategy to the Controllable Synthesis of CuInS2 Hollow Nanospheres and Their Applications in Lithium Ion Batteries,” Journal of Solid State Chemistry, Vol. 186, 2012, pp. 58-63. doi:10.1016/j.jssc.2011.11.042
[5] J. Guo, W. H. Zhou, M. Li, Z. L. Hou, J. Jiao, Z. J. Zhou and S. X. Wu, “Synthesis of Bullet-Like Wurtzite CuInS2 Nanocrystals under Atmospheric Conditions,” Journal of Crystal Growth, Vol. 359, 2012, pp. 72-76. doi:10.1016/j.jcrysgro.2012.08.029
[6] D. Li, Y. Zou and D. Yang, “Controlled Synthesis of Luminescent CuInS2 Nanocrystals and Their Optical Properties,” Journal of Luminescence, Vol. 132, No. 2, 2012, pp. 313-317. doi:10.1016/j.jlumin.2011.08.030
[7] R. R. Philip, S. Dhanya, T. N. Ashokan and B. Pradeep, “Effect of Ga Incorporation on Valence Band Splitting of OVC CuIn3Se5 Thin Films,” Journal of Physics and Chemistry of Solids, Vol. 72, No. 4, 2011, pp. 294-29. doi:10.1016/j.jpcs.2011.01.011
[8] B. Berenguier and H. J. Lewerenz, “Efficient Solar Energy Conversion with Electrochemically Conditioned CuInS2 Thin Film Absorber Layers,” Electrochemistry Communications, Vol. 8, No. 1, 2006, pp. 165-169. doi:10.1016/j.elecom.2005.08.012
[9] I. V. Bodnar, V. A. Polubok, V. Y. Rud and M. S. Serginov, “Structure Based on Silicon Compounds Cu(Ag)InnSm,” Physics and Semiconductors Technique, Vol. 38, No. 2, 2004, pp. 202-206.
[10] S. H. Chaki and A. Agarwal, “Growth, Surface Microtopographic and Thermal Studies of CuInS2,” Journal of Crystal Growth, Vol. 308, No. 1, 2007, pp. 176-179.
[11] N. Khemiri and M. Kanzari, “Comparative Study of Structural and Morphological Properties of CuIn3S5 and CuIn7S11 Materials,” Nuclear Instruments and Methods in Physics Research B, Vol. 268, No. 3-4, 2010, pp. 268-272. doi:10.1016/j.nimb.2009.10.175
[12] A. F. Qasrawi and N. M. Gasanly, “Crystal Data, Photoconductivity and Carrier Mechanisms in CuIn5S8 Single Crystals,” Crystal Research and Technology, Vol. 36, No. 12, 2001, pp. 1399-1410. doi:10.1002/1521-4079(200112)36:12<1399::AID-CRAT1399>3.0.CO;2-O
[13] F. Py, M. Womes, J. M. Durand, J. Olivier-Fourcade, J. C. Jumas, J. M. Esteva and R. C. Karnatak, “Copper in In2S3: A Study by X-Ray Diffraction, Diffuse Reflectance and X-Ray Absorption,” Journal of Alloys and Compounds, Vol. 178, No. 1-2, 1992, pp. 297-304. doi:10.1016/0925-8388(92)90271-A
[14] K. Basavaswaran, T. Sugiura, Y. Ueno and H. Minoura, “Preparation of Polycrystalline CuIn11S17 Semiconductor with High Crystallinity and Its Preparation of Polycrystalline CuIn11S17 Semiconductor with High Crystallinity and Its Characterization,” Journal of Materials Science Letters, Vol. 9, No. 12, 1990, pp. 1448-1452. doi:10.1007/BF00721612
[15] N. Khemiri and M. Kanzari, “A Comparative Study of the Properties of Thermally Evaporated CuIn2n+1S3n+2 (n = 0, 1, 2 and 3) Thin Films,” Thin Solid Films, Vol. 519, No. 21, 2011, pp. 7201-7206. doi:10.1016/j.tsf.2010.12.212
[16] M. Ladd and R. Palmer, “Structure Determination by X-Ray Cristallography,” Plenum Publishers, New York, 2003. doi:10.1007/978-1-4615-0101-5
[17] B. D. Cullity, “Elements of X-Ray Diffraction,” Addison-Wesley, Boston, 1979.
[18] G. I. Rusu, P. Prepelita, R. S. Rusu, N. Apetroaie, G. Oniciuc and A. Amarie, “On the Structural and Optical Characteristics of Zinc Telluride Thin Films,” Journal of Optoelectronics and Advanced Materials, Vol. 8, No. 3, pp. 922-926.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.