Bax promoter G(-248)A polymorphism in a Turkish clinical breast cancer patients: A case-control study

Abstract

Bax is an important protein involved in apoptotic process. Mutations of the Bax gene are known to af- fect protein expression and function. A promotor polymorphism G(-248)A in the 5’UTR of Bax gene may alter regulation of apoptosis in carcinogenesis. Our study was performed to test the association be- tween G(-248)A polymorphisms in the Bax gene and breast cancer risk and progression. G(-248)A poly- morphism was genotyped in a Turkish breast cancer, case-control population including 53 female cancer patients (mean age ± SD: 60.9 ± 11.9 years) and 82 controls (mean age ± SD: 57.2 ± 17.5 years) using PCR-RFLP analysis. Genotype and allele frequencies were assessed with the chi-square test. There was no difference in the distribution of Bax genotypes, and allele frequencies were G (87.7% versus 88.4%) and A (12.3% versus 11.6%) in the cancer patients and controls, respectively. Within the cancer group, the presence of a polymorphic Bax G(-248)A allele was not associated with clinico-pathological parameters such as advanced tumor stage, lymph node or distant metastasis. We present the first to report on Bax G(-248)A polymorphisms in breast cancer. Our re- sults suggest that Bax G(-248)A polymorphism do not modify individual susceptibility to invasive breast cancer in Turkish women.

Share and Cite:

Yildiz, Y. , Yaylim, I. , Ozkan, N. , Arikan, S. , Turan, S. , Kucucuk, S. , Coskunpinar, E. and Isbir, T. (2013) Bax promoter G(-248)A polymorphism in a Turkish clinical breast cancer patients: A case-control study. American Journal of Molecular Biology, 3, 10-16. doi: 10.4236/ajmb.2013.31002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Siegel, R., Naishadham, D. and Jemal, A. (2012) Cancer statistics. CA: A Cancer Journal for Clinicians, 62, 10-29. doi:10.3322/caac.20138
[2] Ashkenazi, A. and Dixit, V.M. (1998) Death receptors: Signaling and modulation. Science, 281, 1305-1308. doi:10.1126/science.281.5381.1305
[3] Yildiz, Y., Yaylim-Eraltan, I., Arikan, S., Ergen, H.A., Kü?ücük, S. and Isbir, T. (2010) Is there any correlation between TNF-related apoptosis-inducing ligand (TRAIL) genetic variants and breast cancer? Archives of Medical Science, 6, 932-936. doi:10.5114/aoms.2010.19304
[4] Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D.R., Aebersold, R., Siderovski, D.P., Penninger, J.M. and Kroemer, G. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397, 441-446. doi:10.1038/17135
[5] Du, C., Fang, M., Li, Y., Li, L. and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 102, 33-42. doi:10.1016/S0092-8674(00)00008-8
[6] Verhagen, A.M., Ekert, P.G., Pakusch, M., Silke, J., Connolly, L.M., Reid, G.E., Moritz, R.L., Simpson, R.J. and Vaux, D.L. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell, 102, 43-53. doi:10.1016/S0092-8674(00)00009-X
[7] Li, K., Li, Y., Shelton, J.M., Richardson, J.A., Spencer, E., Chen, Z.J., Wang, X. and Williams, R.S. (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell,101, 389-399. doi:10.1016/S0092-8674(00)80849-1
[8] Zhang, L., Yu, J., Park, B.H., Kinzler, K.W. and Vogelstein, B. (2000) Role of BAX in the apoptotic response to anticancer agents. Science, 290, 989-992. doi:10.1126/science.290.5493.989
[9] Miyashita, T. and Reed, J.C. (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 80, 293-299. doi:10.1016/0092-8674(95)90412-3
[10] Chen, K., Hu, Z., Wang, L.E., Sturgis, E.M., El-Naggar, A.K., Zhang, W. and Wei, Q. (2007) Single-nucleotide polymorphisms at the TP53-binding or responsive promoter regions of BAX and BCL2 genes and risk of squamous cell carcinoma of the head and neck. Carcinogenesis, 28, 2008-2012. doi:10.1093/carcin/bgm172
[11] Rampino, N., Yamamoto, H., Ionov, Y., Li, Y., Sawai, H., Reed, J.C. and Perucho, M. (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science, 275, 967-969. doi:10.1126/science.275.5302.967
[12] Meijerink, J.P., Mensink, E.J., Wang, K., Sedlak, T.W., Sl?etjes, A.W., de Witte, T., Waksman, G. and Korsmeyer, S.J. (1998) Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood, 91, 2991-2997.
[13] Adams, J.M. and Cory, S. (1998) The Bcl-2 protein family: Arbiters of cell survival. Science, 281, 1322-1326. doi:10.1126/science.281.5381.1322
[14] Yin, X.M., Oltvai, Z.N. and Korsmeyer, S.J. (1994) BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature, 369, 321-323. doi:10.1038/369321a0
[15] Zha, H., Aimé-Sempé, C., Sato, T. and Reed, J.C. (1996) Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. The Journal of Biological Chemistry, 271, 7440-7444. doi:10.1074/jbc.271.13.7440
[16] Peng, H., Aiello, A., Packham, G., Isaacson, P.G. and Pan, L. (1998) Infrequent bax gene mutations in B-cell lymphomas. The Journal of Pathology, 186, 378-382. doi:10.1002/(SICI)1096-9896(199812)186:4<378::AID-PATH203>3.0.CO;2-5
[17] Meijerink, J.P., Smetsers, T.F., Sl?etjes, A.W., Linders, E.H. and Mensink, E.J. (1995) Bax mutations in cell lines derived from hematological malignancies. Leukemia, 9, 1828-1832.
[18] Yamamoto, H., Sawai, H. and Perucho, M. (1997) Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Reserch, 57, 4420-4426.
[19] Brimmell, M., Mendiola, R., Mangion, J. and Packham, G. (1998) BAX frameshift mutations in cell lines derived from human haemopoietic malignancies are associated with resistance to apoptosis and microsatellite instability. Oncogene, 16, 1803-1812. doi:10.1038/sj.onc.1201704
[20] Gaidano, G., Vivenza, D., Forconi, F., Capello, D., Gloghini, A., Bhatia, K., Gutierrez, M., Gallicchio, M., Avanzi, G.C., Fassone, L., Ariatti, C., Buonaiuto, D., Cingolani, A., Saglio, G., Tirelli, U., Larocca, L.M., Dalla-Favera, R. and Carbone, A. (2000) Mutation of BAX occurs infrequently in acquired immunodeficiency syndrome-related non-Hodgkin’s lymphomas. Genes Chromosomes Cancer, 27, 177-182. doi:10.1002/(SICI)1098-2264(200002)27:2<177::AID-GCC9>3.0.CO;2-O
[21] Yashiro, M., Hirakawa, K. and Boland, C.R. (2010) Mutations in TGFbeta-RII and BAX mediate tumor progression in the later stages of colorectal cancer with microsatellite instability. BMC Cancer, 10, 303. doi:10.1186/1471-2407-10-303
[22] Shima, K., Morikawa, T., Yamauchi, M., Kuchiba, A., Imamura, Y., Liao, X., Meyerhardt, J.A., Fuchs, C.S. and Ogino, S. (2011) TGFBR2 and BAX mononucleotide tract mutations, microsatellite instability, and prognosis in 1072 colorectal cancers. PLoS One, 6, e25062. doi:10.1371/journal.pone.0025062
[23] Oliveira, C., Seruca, R., Seixas, M. and Sobrinho-Sim?es, M. (1998) The clinicopathological features of gastric carcinomas with microsatellite instability may be mediated by mutations of different “target genes”: A study of the TGFbeta RII, IGFII R, and BAX genes. The American Journal of Pathology, 153, 1211-1219. doi:10.1016/S0002-9440(10)65665-9
[24] Iacopetta, B.J., Soong, R., House, A.K. and Hamelin, R. (1999) Gastric carcinomas with microsatellite instability: Clinical features and mutations to the TGF-beta type II receptor, IGFII receptor, and BAX genes. The Journal of Pathology, 187, 428-432. doi:10.1002/(SICI)1096-9896(199903)187:4<428::AID-PATH264>3.0.CO;2-A
[25] Cho, S., Hahm, J.H. and Hong, Y.S. (2001) Analysis of p53 and BAX mutations, loss of heterozygosity, p53 and BCL2 expression and apoptosis in basal cell carcinoma in Korean patients. British Journal of Dermatology, 144, 841-848. doi:10.1046/j.1365-2133.2001.04142.x
[26] Addeo, R., Crisci, S., D’Angelo, V., Vincenzi, B., Casale, F., Pettinato, G., Donofrio, V., Boldrini, R., Alaggio, R., Collini, P., Bertorelle, R., Di Tullio, M.T., Caraglia, M., Terenziani, M., Lo Curto, M. and Indolfi, P. (2007) Bax mutation and overexpression inversely correlate with immature phenotype and prognosis of childhood germ cell tumors. Oncology Reports, 17, 1155-1161.
[27] Krajewski, S., Blomqvist, C., Franssila, K., Krajewska, M., Wasenius, V.M., Niskanen, E., Nordling, S. and Reed, J.C. (1995) Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Reserch, 55, 4471-4478.
[28] Gascoyne, R.D., Krajewska, M., Krajewski, S., Connors, J.M. and Reed, J.C. (1997) Prognostic significance of Bax protein expression in diffuse aggressive non-Hodgkin’s lymphoma. Blood, 90, 3173-3178.
[29] Tai, Y.T., Lee, S., Niloff, E., Weisman, C., Strobel, T. and Cannistra, S.A. (1998) BAX protein expression and clinical outcome in epithelial ovarian cancer. Journal of Clinical Oncology, 16, 2583-2590
[30] Saxena, A., Moshynska, O., Sankaran, K., Viswanathan, S. and Sheridan, D.P. (2002) Association of a novel single nucleotide polymorphism, G(-248)A, in the 5’-UTR of BAX gene in chronic lymphocytic leukemia with disease progression and treatment resistance. Cancer Letters, 10, 187, 199-205. doi:10.1016/S0304-3835(02)00378-6
[31] Moshynska, O., Moshynskyy, I., Misra, V. and Saxena, A. (2005) G125A single nucleotide polymorphism in the human BAX promoter affects gene expression. Oncogene, 24, 2042-2049. doi:10.1038/sj.onc.1208377
[32] Lahiri, O., Harris, S., Packham, G. and Howell, M. (2007) p53 pathway gene single nucleotide polymorphisms and chronic lymphocytic leukemia. Cancer Genetics and Cytogenetics, 179, 36-44. doi:10.1016/j.cancergencyto.2007.07.013
[33] Semaan, S.J., Li, Y. and Nickells, R.W. (2010) A single nucleotide polymorphism in the Bax gene promoter affects transcription and influences retinal ganglion cell death. ASN Neuro, 2, e00032. doi:10.1042/AN20100003
[34] Farnebo, L., Jedlinski, A., Ansell, A., Vainikka, L., Thunell, L.K., Grénman, R., Johansson, A.C. and Roberg, K. (2009) Proteins and single nucleotide polymorphisms involved in apoptosis,growth control, and DNA repair predict cisplatin sensitivity in head and neck cancer cell lines. International Journal of Molecular Medicine, 24, 549-556.
[35] Miller, S.A., Dykes, D.D. and Polesky, H.F. (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16, 1215. doi:10.1093/nar/16.3.1215
[36] Skogsberg, S., Tobin, G., Kr?ber, A., Kienle, D., Thunberg, U., Aleskog, A., Karlsson, K., Laurell, A., Merup, M., Vilpo, J., Sundstr?m, C., Roos, G., Jernberg-Wiklund, H., D?hner, H., Nilsson, K., Stilgenbauer, S. and Rosenquist, R. (2006) The G(-248)A polymorphism in the promoter region of the Bax gene does not correlate with prognostic markers or overall survival in chronic lymphocytic leukemia. Leukemia, 20, 77-81. doi:10.1038/sj.leu.2404030
[37] Fujii, T., Tabe, Y., Yajima, R., Yamaguchi, S., Tsutsumi, S., Asao, T. and Kuwano, H. (2011) Extracapsular invasion as a risk factor for disease recurrence in colorectal cancer. World Journal of Gastroenterology, 17, 2003-2006. doi:10.3748/wjg.v17.i15.2003
[38] Fujii, T., Yanagita, Y., Fujisawa, T., Hirakata, T., Iijima, M. and Kuwano, H. (2010) Implication of extracapsular invasion of sentinel lymph nodes in breast cancer: Prediction of nonsentinel lymph node metastasis. World Journal of Surgery, 34, 544-548. doi:10.1007/s00268-009-0389-4

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.