Share This Article:

Controllable Growth of Ni Nanocrystals Embedded in BaTiO3/SrTiO3 Superlattices

Abstract Full-Text HTML Download Download as PDF (Size:1065KB) PP. 4-8
DOI: 10.4236/mnsms.2013.31B002    3,847 Downloads   5,311 Views  

ABSTRACT

BaTiO3/SrTiO3 superlattices with embedded Ni nanocrystals (NCs) have been grown on SrTiO3 (001) substrate using laser molecular beam epitaxy (L-MBE). In situ reflection high-energy electron diffraction (RHEED) was employed to investigate the process of lattice strain in the self-organization of Ni NCs and the epitaxial growth of BaTiO3/SrTiO3 superlattices. The results indicated that the strain from large lattice mismatch drove the self-organization of Ni NCs. Also, the layer-by-layer growth of BaTiO3/SrTiO3 superlattices Keywords: Nanocrystal; Superlattices; Self-organization 1. Introduction Oxide artificial superlattices, especially (001) oriented BaTiOsuperlattices and the island growth of Ni NCs were controllable ac-curately. The fine alternation of the two processes would provide a possible route to engineer controllably the nano-composite microstructure.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Z. Xiong and W. Wu, "Controllable Growth of Ni Nanocrystals Embedded in BaTiO3/SrTiO3 Superlattices," Modeling and Numerical Simulation of Material Science, Vol. 3 No. 1B, 2013, pp. 4-8. doi: 10.4236/mnsms.2013.31B002.

References

[1] H. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rou-leau & D. H. Lownders, “Strong polarization enhance-ment in asymmetric three-component ferroelectric su-perlattices”, Nature, Vol. 433, 2005, pp. 395-399. doi:10.1038/nature03261
[2] O. Nakagawara, T. Shi-muta, T. Makino, S. Arai, H. Tabata and T. Kawai, “Epi-taxial growth and dielectric properties of (111) oriented BaTiO3/SrTiO3 superlattices by pulsed-laser deposition”, Appl. Phys. Lett, Vol. 77, No. 20, 2000, pp. 3257-3260. doi:10.1063/1.1324985
[3] H. Tabata, H. Tanaka, and T. Kawai, “Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties”, Appl. Phys. Lett, Vol. 65, No. 15, 1994, pp. 1970-1973. doi:10.1063/1.112837
[4] A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructure metal film”, Opt. Lett, Vol. 28, No. 6, 2003, pp. 423-425. doi: 10.1364/OL.28.000423
[5] T. Shimuta, O. Nakagawara, T. Makino, and S. Arai, “Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with “asymmetric” structure”, J. Appl. Phys, Vol. 91, No. 4, 2002, pp. 2290-2294. doi: 10.1063/1.1434547
[6] T. Hayashi and T. Tanaka, “Preparation and Dielectric Properties of SrTiO3/BaTiO3 Multilayer Thin Films by Sol-Gel Method”, Jpn. J. Appl. Phys, Vol. 34, 1995, pp. 5100-5104. doi:10.1143/JJAP.34.5100
[7] T. Kuroiwa, Y. Tsunemine, T. Horikawa, T. Makita, J. Tanimura, N. Mikami and K. Sato, “Dielectric Properties of (BaxSr1-x)TiO3 Thin Films Prepared by RF Sputtering for Dynamic Random Access Memory Application”, Jpn. J. Appl. Phys, Vol. 33, No. 9, 1994, pp. 5187-5191. doi:10.1143/JJAP.33.5187
[8] K. Ijima, T. Terashima, Y. Bando, K. Kamigaki and H.Terauchi, “Atomic layer growth of oxide thin films with perovskite-type structure by reactive evaporation”, J. Appl. Phys, Vol. 72, No. 7, 1992, pp. 2840-2845. doi:10.1063/1.351536
[9] B. D. Qu, M. Evstigneev, D. J. Johnson and R. H. Prince, “Di-electric properties of BaTiO3/SrTiO3 multilayered thin films prepared by pulsed laser deposition”, Appl. Phys. Lett, Vol. 72, No. 11, 1998, pp. 1394-1397. doi:1063/1.121066
[10] H. Drexler, D. Leonard, W. Han-sen, J. P. Kotthaus, and P. M.Petroff, “Spectroscopy of Quantum Levels in Charge-Tunable InGaAs Quantum Dots”, Phys. Rev. Lett, Vol. 73, No. 16, 1994, pp. 2252-2255. doi:10.1103/PhysRevLett.73.2252
[11] J. Coraux, V. Favre-Nicolin, H. Renevier, M. G. Proietti, B. Amstatt, E. Bellet-Amalric and B. Daudin, “Quantitative structural characterization of GaN quantum dot ripe-ningbusing reflection high-energy electron diffraction”, Appl. Phys. Lett, Vol. 101, No. 5, 2007, pp. 1-3. doi: 10.1063/1.2422902
[12] J. Coraux, H. Renevier, V. Fa-vre-Nicolin, G. Renaud, and B. Daudin, “In situ resonant x-ray study of vertical correlation and capping effects during GaN/AlN quantum dot growth”, J. Appl. Phys, Vol. 88, No. 15, 2007, pp.1-3. doi: 10.1063/1.2192572
[13] W. Wu, Y. He, F. Wang, Z. Chen, Y. Tang and W. Sun, “Preparation and characteri-zation of Co-BaTiO3 nano-composite films by the pulsed laser deposition”, J. Crystal Growth, Vol. 289, No. 1, 2006, pp. 408-413. doi: 10.1016/j.jcrysgro.2005.11.041
[14] F. F. Ge, X. M. Wang, L. H. Cao, et al., “Self-Organized Ni Nanocrystal Embedded in BaTiO3 Epitaxial Film”, Nano Res. Lett, Vol. 5, No. 5, 2010, pp. 834-838. doi: 10.1007/s11671-010-9570-9
[15] Z. Xiong, W. Sun, X. Wang, F. Jiang, W.Wu, “Dielectric enhancement of Ba-TiO3/SrTiO3 superlattices with embedded Ni nanocrys-tals”, J. Alloys Compd, Vol. 513, 2012, pp. 300-303. doi: 10.1016/j.jallcom.2011.09.103
[16] Y. H. Lin, S. Zhang, C. Deng, Y. Zhang, X. Wang, C. W. Nan, “Magnetic behavior and thickness dependence in Co-doped BaTiO3 thin films”, Appl. Phys. Lett, Vol. 92, No. 11, 2008, pp. 1-3. doi:10.1063/1.2898525
[17] Y. H. Lin, J. Yuan, S. Zhang, et al., “Multiferroic behavior observed in highly orientated Mn-doped BaTiO3 thin films”, Appl. Phys. Lett, Vol. 96, No. 3, 2009, pp. 1-3. doi: 10.1063/1.3182793
[18] S. Gepr?gs, A. Brandlmaier, M. Opel, R. Gross, and S. T. B. Goennenwein, “Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures”, Appl. Phys. Lett, Vol. 96, No. 14, 2010, pp. 1-3. doi: 10.1063/1.3377923
[19] K. Godo, J. H. Chang, H. Makino, T. Takai, T. Hanada and T. Yao, T, Sascao, and T. Goto, “Formation processes of CdTe quantum dots on ZnTe substrates studied by reflection high-energy electron diffraction and photoluminescence”, J. Appl. Phys, Vol. 92, No. 9, 2002, pp. 5490-5493. doi: 10.1063/1.1513888
[20] S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys”, Phys. Rev. B, Vol. 33, No. 12, 1986, pp. 7983-7991. doi: 10.1103/PhysRevB.33.7983
[21] B. Shin and M. J. Aziz, “Modeling RHEED intensity oscil-lations in multilayer epitaxy: Determination of the Eh-rlich-Schwoebel barrier in Ge(001) homoepitaxy”, Phys. Rev. B, Vol. 76, No. 16, 2007, pp. 1-12. doi: 10.1103/PhysRevB.76.165408
[22] M. Dabrows-ka-Szata, “Analysis of RHEED pattern from semicon-ductor surfaces”, Mater. Chem Phys, Vol. 81, No. 2, 2003, pp. 257-259. doi: 10.1016/S0254-0584(02)00569-2

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.