Memory AND effector cells in children with bacterial infections of the gastrointestinal and respiratory tracts

Abstract

Infections in infants and children under five years of age are a public health in México and are one of the major causes of death. Methods In this study, lymphocyte immunophenotyping for CD3+ (T-cells), CD3+CD4+, CD3+CD8+,
CD3+CD19+, CD3+CD16/56+, CD45RA+,
CD45RO+, CD62L
- and CD28- were determined in the whole blood of gastrointestinal and respiratory bacterial infected children, using a four-color flow cytometry technique. Results: Our data showed that the percentages and the absolute numbers of monocytes and granulocytes are increased in infected children, when compared to the control group. Similarly, we observed increases in the percentages of B lymphocytes, CD8+ cells, memory T cells
(CD4+CD45RO+ and CD8+CD45RO+) and effector lymphocytes (CD4+CD62L? and CD8+CD28?) in infected children compared with the control group. In contrast, naive T cells were decreased in the bacterial infected children relative to the control group. Additionally, we used ELISA assays to identify the pathogen agent in gastrointestinal and respiratory infection. Comparing different types of infection, we found that the children with respiratory bacterial infections had higher percentages of B lymphocytes, and cytotoxic lymphocytes (CD8+CD28-); and the children with gastrointestinal infections had higher percentages of CD3+ lymphocytes and effector cells (CD4+CD62L-). Conclusions The increase in B lymphocytes and CD8+CD28- cells in the children with respiratory infections and the increase of T lymphocytes and CD4+CD62L- cells in the children with gastrointestinal bacterial infections indicate that both cellular and humoral responses coincide, and both responses are necessary for eliminating the pathogen.

Share and Cite:

Palacios-Martínez, M. , González-Torres, M. , Rodríguez-Cruz, L. , Martínez-Pérez, R. , Cortés-Bejar, C. , Valencia-Chavarria, F. , Martínez-Gómez, D. and Nájera-Medina, O. (2012) Memory AND effector cells in children with bacterial infections of the gastrointestinal and respiratory tracts. Open Journal of Immunology, 2, 202-209. doi: 10.4236/oji.2012.24024.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C Instituto Nacional de Estadística y Geografía (2005) Infant mortality. http://www.inegi.gob.mx
[2] Turvey, S.E. and Broide, D.H. (2010) Innate immunity. Journal of Allergy Clinical Immunology, 125, S24-S32. doi:10.1016/j.jaci.2009.07.016
[3] Koretzky, G. (2010) Multiple roles of CD4 and CD8 in T cell activation. Journal of Immunology, 185, 2643-2644. doi:10.4049/jimmunol.1090076
[4] Dawes, R., Petrova, S., Liu, Z., Wraith, D., Beverley, P.C.L. and Tchilian, E.Z. (2006) Combinations of CD45 isoforms are crucial for immune function and disease. Journal of Immunology, 176, 3417-3425.
[5] Jackson, S.M., Harp, N., Patel, D., Zhang, J., Willson, S., Kim, Y.J., Clanton, C. and Capra, J.D. (2007) CD45RO enriches for activated, highly mutated human germinal center B cells. Blood, 110, 3917-3925. doi:10.1182/blood-2007-05-087767
[6] Mertens, J., Fabri, M., Zingarelli, A., Kubacki, T., Meemboor, S., Groneck, L., Seeger, J., Bessler, M., Hafke, H., Odenthal, M., Bieler, J.G., Kalka, C., Schneck, J.P., Kashkar, H. and Kalka-Moll, W.M. (2009) Streptococcus pneumoniae serotype 1 capsular polysaccharide induces CD8+CD28-regulatory T lymphocytes by TCR crosslinking. PLoS Pathogy, 5, 1-15. doi:10.1371/journal.ppat.1000596
[7] Uda, H., Mima, T., Yamaguchi, N., Katada, Y., Fukuda, M., Fujii, N., Nakamura, K. and Saiki, O. (2002) Expansion of a CD28 intermediate subset among CD8 T Cells in patients with Infectious mononucleosis. Journal of Virology, 76, 6602-6608. doi:10.1128/JVI.76.13.6602-6608.2002
[8] Pepper, M. and Jenjins, M.K. (2011) Origins of CD4+ effector and central memory T cells. Nature Immunology, 12, 467-471. doi:10.1038/ni.2038
[9] Sallusto, F., Geginat, J. and Lanzavecchia, A. (2004) Central memory and effector memory T cell subsets: Function, Generation, and Maintenance. Annual Review Immunology, 22, 745-763. doi:10.1146/annurev.immunol.22.012703.104702
[10] Unsoeld, H. and Pircher, H. (2005) Complex memory T-cell phenotypes revealed by coexpression of CD62L and CCR7. Journal of Virology, 79, 4510-4513. doi:10.1128/JVI.79.7.4510-4513.2005
[11] Weng, N., Akbar, A.N. and Goronzy, J. (2009) CD28 T cells: Their role in the age associated decline of immune function. Trends in Immunology, 30, 306-312. doi:10.1016/j.it.2009.03.013
[12] Ramos-Galván, R. (1975) Pediatric somatometry: A semilongitudinal study on children in Mexico City. Archivos de Investigación Médica, 6, 383-396.
[13] Kurstak, E. (1985) Progress in enzyme immunoassays: Production of reagents, experimental design, and interpretation. Bull World Health Organ, 63, 793-811.
[14] Li, Y., Frey, E. and Mackenzie, A.M.R. (2000) Finlay BB. Human response to Escherichia coli O157:H7 infection: Antibodies to secreted virulence factors. Infection and Immunology, 68, 5090-5095. doi:10.1128/IAI.68.9.5090-5095.2000
[15] Honstettre, A., Meghari, S., Nune’s, J.A., Lepidi, H., Raoult, D., Olive, D. and Mege, J.L. (2006) Role for the CD28 Molecule in the Control of Coxiella burnetii Infection. Infection and Immunology, 74, 1800-1808. doi:10.1128/IAI.74.3.1800-1808.2006
[16] Segal, A.W. (2005) How neutrophils kill microbes. Annual Review Immunology, 23, 97-223. doi:10.1146/annurev.immunol.23.021704.115653
[17] Bonilla, F.A. and Oettgen, H.C. (2010) Adaptive immunity. Journal of Allergy and Clinical Immunology, 125, S33-S40. doi:10.1016/j.jaci.2009.09.017
[18] Wershil, B.K. and Furuta, G.T. (2008) Gastrointestinal mucosal immunity. Journal of Allergy and Clinical Immunology, 121, S380-S383. doi:10.1016/j.jaci.2007.10.023
[19] Cook, J., Hepler, R., Pancari, G., Kuklin, N., Fan, H., Wang, X.M., Cope, L., Tan, C., Joyce, J., Onishi, J., Montgomery, D., Anderson, A. and McNeely, T. (2009) Staphylococcus aureus capsule type 8 antibodies provide inconsistent efficacy in murine models of staphylococcal infection. Human Vaccine, 5, 254-263. doi:10.4161/hv.5.4.6765
[20] Cui, W. and Kaech, S.M. (2010) Generation of effector CD8+ T cells and their conversion to memory T cells. Immunology Review, 236, 151-166. doi:10.1111/j.1600-065X.2010.00926.x
[21] Joshi, N.S. (2007) Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunology, 27, 281-295.
[22] Rutishauser, R.L. (2009) Transcriptional repressor Blimp-1 promotes CD8(+) T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunology, 31, 296-308.
[23] Jambo, K.C., Sepako, E., Heyderman, R.S. and Gordon, S.B. (2010) Potential role for mucosally active vaccines against pneumococcal pneumonia. Trends of Microbiology, 18, 81-89. doi:10.1016/j.tim.2009.12.001
[24] Nájera, O., González, C., Cortés, E., Toledo, G. and Ortiz, R. (2007) Effector T lymphocytes in well-nourished and malnourished infected children. Clinical Experimental Immunology, 48, 501-506. doi:10.1111/j.1365-2249.2007.03369.x
[25] Voskoboinik, I., Dunstone, M.A., Baran, K., Whisstock, J.C. and Trapani, J.A. (2010) Perforin: Structure, function, and role in human immunopathology. Immunology Review, 235, 35-54.
[26] Waterhouse, N.J., Sutton, V.R., Sedelies, K.A., Ciccone, A., Jenkins, M., Turne, S.J., Bird, P.I. and Trapani, J.A. (2006) Cytotoxic T lymphocyte-induced killing in the absence of granzymes A and B is unique and distinct from both apoptosis and perforin-dependent lysis. Journal of Cellular Biology, 173, 133-144. doi:10.1083/jcb.200510072
[27] Jacobsen, M., Detjen, A.K., Mueller, H., Gutschmidt, A., Leitner, S., Wahn, U., Magdorf, K. and Kaufmann, S.H.E. (2007) Clonal Expansion of CD8+ Effector T Cells in Childhood Tuberculosis. Journal of Immunology, 179, 1331-1339.
[28] Helmin-Basa, A., Michalkiewicz, J. and Gackowska, L. (2011) Pediatric Helicobacter pylori infection and circulating T-Lymphocyte activation and differentiation. Helicobacter, 16, 27-35. doi:10.1111/j.1523-5378.2010.00809.x
[29] McKinstry, K.K., Strutt, T.M. and Swain, S.L. (2010) The potential of CD4 T-cell memory. Immunology, 130, 1-9. doi:10.1111/j.1365-2567.2010.03259.x
[30] Booth, N.J., McQuaid, A.J., Soband, T., Kissane, S., Agius, E., Jackson, S.E., Salmon, M., Falciani, F., Yong, K., Rustin, M.H., Akbar, A.N. and Vukmanovic-Stejic, M. (2010) Different proliferative potential and migratory characteristics of human CD4+ regulatory T cells that express either CD45RA or CD45RO. Journal of Immunology, 8, 4317-4326. doi:10.4049/jimmunol.0903781
[31] Wong, P. and Parmer, E. (2019) CD8 T cell responses to infectious pathogens. Annual Review Immunology, 21, 29-70. doi:10.1146/annurev.immunol.21.120601.141114
[32] Cisternas, O. (2007) La tinción de gram como herramienta de uso diario en el diagnóstico precoz de algunos patógenos. Revista de Hospital del Ni?o, 23, 140-146.
[33] Hill, D.A. and Artis, D. (2010) Intestinal bacteria and the regulation of immune cell homeostasis. Annual Review Immunology, 28, 623-667. doi:10.1146/annurev-immunol-030409-101330
[34] D’Elios, M.M., Benagiano, M., Bella, Ch.D. and Amedei, A. (2011) T-cell response to bacterial agents. Journal of Infection in Developing Countries, 5, 640-645. doi:10.3855/jidc.2019
[35] MacDonald, A.S., Straw, A.D., Dalton, N. and Pearce, E.J. (2002) Dendritic cells: A role for CD40. Journal of Immunology, 168, 537-540.
[36] Coffman, R.L. (2010) The Origin of TH2 Responses. Science, 328, 1116-1117. doi:10.1126/science.1192009

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.