Share This Article:

Spectral Analysis and Crystal Structure of Spiro[2.2”] Acenaphthene-1”-One-Spiro[3.3’]-5’-(2,3-Dichlorophenyl Methylidene)-1’-Methylpiperidin-4’-One-4- (2,3-Dichlorophenyl) Octahydroindolizine

Abstract Full-Text HTML Download Download as PDF (Size:695KB) PP. 74-78
DOI: 10.4236/csta.2012.13014    3,532 Downloads   6,270 Views  

ABSTRACT

The crystal structure of spiro[2.2]acenaphthene-1-onespiro[3.3]-5-(2,3-dichlorophenylmethylidene)-1-methylpipe-ridin-4-one-4-(2,3-dichorophenyl) octahydroindolizine was elucidated by single crystal X ray diffraction. The title compound C37H30Cl4N2O2, crystallizes in the orthorhombic system, space group P212121 with a = 8.4610(4) , b = 16.0926(6) , c= 23.8997(11) and Z = 4. The central piperidine ring adopts twisted conformation, the piperidine of octahydroindolizine ring is in chair conformation and the pyrrole ring is in slightly twisted envelope conformation. Details of the synthesis, NMR, crystal structure determination and intra- and inter- molecular interactions of the compound are given.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Priya, J. Suresh, S. Sivakumar and R. Kumar, "Spectral Analysis and Crystal Structure of Spiro[2.2”] Acenaphthene-1”-One-Spiro[3.3’]-5’-(2,3-Dichlorophenyl Methylidene)-1’-Methylpiperidin-4’-One-4- (2,3-Dichlorophenyl) Octahydroindolizine," Crystal Structure Theory and Applications, Vol. 1 No. 3, 2012, pp. 74-78. doi: 10.4236/csta.2012.13014.

References

[1] R. Granich, F. Wares, S. Suvanand and L. S. Chauhan, “Lancet Infectious Disease,” Tuberculosis Control in India, Vol. 3, No. 9, 2003, p. 535. doi:10.1016/S1473-309 9(03)00744-8
[2] R. J. O’Brien and P. P. Nunn, “The Need for New Drugs against Tuberculosis. Obstacles, Opportunities, and Next Steps,” American Journal of Respiratory and Critical Care Medicine, Vol. 163, No. 5, 2001, pp. 1055-1058.
[3] M. S. Chande, R. S. Verma, P. A. Barve, R. R. Khanwelkar, R. B. Vaidya and K. B. Ajaikumar, “Facile Synthesis of Active Antitubercular, Cytotoxic and Antibacterial Agents: A Michael Addition Approach,” Journal of Medicinal Chemistry, Vol. 40, No. 11, 2005, p. 1143.
[4] A. Dandia, M. Sati, K. Arya, R. Sharma and A. Loupy, “Facile One Pot Microwave Induced Solvent-Free Synthesis and Antifungal, Antitubercular Screening of Spiro [1,5]-Benzothiazepin-2,3’[3’H]indol-2[1’H]-ones,” Chemical & Pharmaceutical Bulletin, Vol. 51, No. 10, 2003, p. 1137.
[5] D. Sriram, P. Yogeeswari and K. Madhu, “Synthesis and in Vitro Antitubercular Activity of Some 1-[(4-sub) Phenyl]-3-(4-{1-[(Pyridine-4-Carbonyl)Hydrazono]Ethyl} Phenyl)Thiourea,” Bioorganic & Medicinal Chemistry Letters, Vol. 16, No. 4, 2006, pp. 876-878. doi:10.1016/j.bmcl.2005.11.004
[6] M. Biava, G. C. Porretta, G. Poc, S. Supino, D. Deidda, R. Pompei, P. Molicotti, F. Manetti and M. J. Botta, “Antimycobacterial Agents. Novel Diarylpyrrole Derivatives of BM212 Endowed with High Activity toward Mycobacterium Tuberculosis and Low Cytotoxicity,” Journal of Medicinal Chemistry, Vol. 49, No. 16, 2006, pp. 4946-4952. doi:10.1021/jm0602662
[7] M. Shaharyar, A. A. Siddiqui, M. A. Ali, D. Sriram and P. Yogeeswari, “Synthesis and in Vitro Antimycobacterial Activity of N1-Nicotinoyl-3-(4’-Hydroxy-3’-Methyl Phenyl)-5-[(sub)Phenyl]-2-Pyrazolines,” Bioorganic & Medicinal Chemistry Letters, Vol. 16, No. 15, 2006, pp. 3947-3949. doi:10.1016/j.bmcl.2006.05.024
[8] R. R. Kumar, S. Perumal, P. Senthilkumar, P. Yogeeswari and D. Sriram, “A Highly Atom Economic, Chemo-, Regio- and Stereoselective Synthesis, and Discovery of Spiro-Pyrido-Pyrrolizines and Pyrrolidines as Antimycobacterial Agents,” Tetrahedron, Vol. 64, No. 13, 2008, pp. 2962-2971. doi:10.1016/j.tet.2008.01.072
[9] R. R. Kumar, S. Perumal, P. Senthilkumar, P. Yogeeswari and D. Sriram, “Discovery of Antimycobacterial Spiro piperidin-4-Ones: An Atom Economic, Stereoselective Synthesis, and Biological Intervention,” Journal of Medicinal Chemistry, Vol. 51, No. 18, 2008, pp. 5731-5735. doi:10.1021/jm800545k
[10] H. Malonne, J. Hanuise and J. Fontaine, “Topical Anti-Inflammatory Activity of New 2-(1-Indolizinyl)Propionic Acid Derivatives in mice,” Pharmacy and Pharmacology Communications, Vol. 4, No. 5, 1998, pp. 241-243.
[11] S. Medda, P. Jaisankar, R. K. Manna, B. Pal, V. S. Giri and M. K. Basu, “Phospholipid Microspheres: A Novel Delivery Mode for Targeting Antileishmanial Agent in Experimental Leishmaniasis,” Journal of Drug Targeting, Vol. 11, No. 2, 2003, pp. 123-128. doi:10.1080/1061186031000119101
[12] P. Sonnet, P. Dallemagne, J. Guillom, C. Engueard, S. Stiebing, J. Tangue, B. Bureau, S. Rault, P. Auvray, S. Moslemi, P. Sourdaine and G. E. Seralini, “New Aromatase Inhibitors. Synthesis and Biological Activity of Aryl-Substituted Pyrrolizine and Indolizine Derivatives,” Bioorganic & Medicinal Chemistry, Vol. 8, No. 5, 2000, pp. 945-955. doi:10.1016/S0968-0896(00)00024-9
[13] W. H. Pearson and L. Guo, “Synthesis and Mannosidase Inhibitory Activity of 3-Benzyloxymethyl Analogs of Swainsonine,” Tetrahedron Letters, Vol. 42, No. 47, 2001, pp. 8267-8271. doi:10.1016/S0040-4039(01)01777-4
[14] F. H. Allen, “The Cambridge Structural Database: A Quarter of a Million Crystal Structures and Rising,” Acta Crystallographica, Vol. B58, No. 1, 2002, pp. 380-388.
[15] Bruker, “APEX2, SAINT-Plus and XPREP,” Bruker AXS Inc., Madison, 2004.
[16] G. M. Sheldrick, “A Short History of SHELX,” Acta Crystallographica, Vol. A64, Part 1, 2008, pp. 112-122.
[17] A. L. Spek, “Structure Validation in Chemical Crystallography,” Acta Crystallographica, Vol. D65, Part 2, 2009, pp. 148-155.
[18] D. Cremer and A. J. Pople, “General Definition of Ring Puckering Coordinates,” Journal of the American Chemical Society, Vol. 97, No. 6, 1975, pp. 1354-1358. doi:10.1021/ja00839a011
[19] M. Nardelli, “Ring Asymmetry Parameters from Out-of-Plane Atomic Displacements,” Acta Crystallographica, Vol. C39, Part 8, 1983, pp. 1141-1142.
[20] A. C. Hazell, “The Crystal Structure of 6b,8a-Dihydro-cyclobut[a]Acenaphthylene, C14H10,” Acta Crystallo-graphica, Vol. B32, Part 7, 1976, pp. 2010-2013.
[21] A. C. Hazell and R. G. Hazell, “The Crystal Structure of 6b, 10b-Dihydrobenzo[j]Cyclobut[a]Acenaphthylene, C18H12,” Acta Crystallographica, Vol. B33, Part 2, 1977, pp. 360-365.
[22] A. C. Hazell and Weigelt, “6b,12b-Dihydronaphtho[2,3-j]Cyclobut[a]Acenaphthylene,” Acta Crystallographica, Vol. B32, Part 1, 1976, pp. 306-308.
[23] P. G. Jones, P. Bubenitschek, G. M. Sheldrick and G. Dyker, “Acenaphtho[1,2a]acenaphthylene at 178 K,” Acta Crystallographica, Vol. C48, Part 9, 1992, pp. 1633-1635.
[24] T. V. Sundar, V. Parthasarathi, A’lvarez-Ruá, C. S. Garc?á-Granda, A. Saxena, P. Pardasani and R. T. Pardasani, “(rac-5RS,7RS,8SR)-Spiro[7-Methoxycar-bonyl-1-aza-3-tHiabicyclo[3.3.0]octane-8,1’-acenaphthylen]-2’-one,” Acta Crystallographica, Vol. E58, Part 12, 2002, pp. o1405-o1407.
[25] J. L. Sussman and S. J. Wodak, “The Crystal Structure of Fulvine: A Pyrrolizidine Alkaloid,” Acta Crystallographica, Vol. B29, Part 12, 1973, pp. 2918-2926.
[26] S. J. Wodak, “The Crystal Structure of Heliotrine: A PyrRolizidine Alkaloid Monoester,” Acta Crystallographica, Vol. B31, Part 2, 1975, pp. 569-573.
[27] S. N. Pandeya and J. R. Dimmock, “An Introduction to Drug Design,” New Age International Publishers, New Delhi, 1997.
[28] J. W. Quail, A. Doroud, H. N. Pati, U. Das and J. R. Dimmock, “(E,E)-2-(4-Fluorophenylmethylene)-6-(4-NitrophenylmeThylene)Cyclohexanone,” Acta Crystallographica, Vol. E61, Part 6, 2005, pp. o1774-o1776.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.