Sirtuin-1 mediates the obesity induced risk of common degenerative diseases: Alzheimer’s disease, coronary artery disease and type 2 diabetes

Abstract

Obesity, especially at mid-life, is a major risk factor for atherosclerosis, insulin resistance and the metabolic syndrome, which in turn contribute to coronary artery disease (CAD), Type 2 diabetes and Alzheimer’s disease (AD). The rise in overweight and obesity in all societies is prompting intense research into the causes and effects of the condition. Obesity disrupts many body systems including glucose and lipid metabolism, circadian rhythms and liver function. It also causes or increases inflammation and oxidative stress. Within cells, the endoplasmic reticulum (ER) appears to be particularly susceptible to such metabolic disruption. Sirtuin 1 (Sirt1) and leptin have received attention recently as they are central regulatory factors for the body’s metabolic pathways which interact at particular levels, for example lipid and Abeta metabolism. This mini-review discusses recent findings concerning obesity, lipid metabolism and the role of Sirtuin 1 and how all influence the ER. A greater understanding of obesity and its effects on metabolic control systems of the body are required, to develop pharmacological, dietary and lifestyle changes that will reduce the incidence of CAD, Type 2 diabetes and AD.


Share and Cite:

Martins, I. , Wilson, A. , Lim, W. , Laws, S. , Fuller, S. and Martins, R. (2012) Sirtuin-1 mediates the obesity induced risk of common degenerative diseases: Alzheimer’s disease, coronary artery disease and type 2 diabetes. Health, 4, 1448-1456. doi: 10.4236/health.2012.412A209.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Hansen, J.C., Gilman, A.P. and Odland, J.O. (2010) Is thermogenesis a significant causal factor in preventing the “globesity” epidemic? Medical Hypotheses, 75, 250- 256. doi:10.1016/j.mehy.2010.02.033
[2] Businaro, R., Ippoliti, F., Ricci, S., Canitano, N. and Fuso, A. (2012) Alzheimer’s disease promotion by obesity: In- duced mechanisms-molecular links and perspectives. Current Gerontology and Geriatrics Re-search, 2012, 986823.
[3] Misiak, B., J. Leszek, and Kiejna, A. (2012) Metabolic syndrome, mild cognitive impairment and Alzheimer’s disease—The emerging role of systemic low-grade in- flammation and adiposity. Brain Research Bulletin, 89, 144-149. doi:10.1016/j.brainresbull.2012.08.003
[4] Luchsinger, J.A. and Mayeux, R. (2007) Adiposity and Alzheimer’s disease. Current Alzheimer Research, 4, 127- 134. doi:10.2174/156720507780362100
[5] Petanceska, S.S. (2007) Exploring the links between obe- sity and Alzheimer’s disease. Current Alzheimer Research, 4, 95-96. doi:10.2174/156720507780362218
[6] Whitmer, R.A. (2007) The epidemiology of adiposity and dementia. Current Alzheimer Research, 4, 117-122. doi:10.2174/156720507780362065
[7] Wolozin, B. and Bednar, M.M. (2006) Interventions for heart disease and their effects on Alzheimer’s disease. Neurology Research, 28, 630-636. doi:10.1179/016164106X130515
[8] Whalley, L.J., Dick, F.D. and McNeill, G. (2006) A life-course approach to the aetiology of late-onset dementias. The Lancet Neurology, 5, 87-96. doi:10.1016/S1474-4422(05)70286-6
[9] Weih, M., Wiltfang, J. and Kornhuber, J. (2007) Non- pharmacologic prevention of Alzheimer’s disease: Nutri- tional and life-style risk factors. Journal of Neural Trans- mission, 114, 1187-1197. doi:10.1007/s00702-007-0704-x
[10] De Mendonca, A.V., 3rd European symposium on Alz- heimer’s disease prevention, Lisbonne, June 1st 2007. The Journal of Nutrition Health and Aging, 12, 50S. doi:10.1007/BF02982586
[11] Xu, W.L., Atti, A.R., Gatz, M., Pedersen, N.L., Johansson, B. and Fratiglioni, L. (2011) Midlife overweight and obe- sity increase late-life dementia risk: A population-based twin study. Neurology, 76, 1568-1574. doi:10.1212/WNL.0b013e3182190d09
[12] Fitzpatrick, A.L., Kuller, L.H., Lopez, O.L., Diehr, P., O’Meara, E.S., Longstreth Jr., W.T., et al. (2009) Midlife and late-life obesity and the risk of dementia: cardiovas- cular health study. Archives of Neurology, 66, 336-342. doi:10.1001/archneurol.2008.582
[13] Gustafson, D., Rothen-berg, E., Blennow, K., Steen, B. and Skoog, I. (2003) An 18-year follow-up of overweight and risk of Alzheimer disease. Archives of Internal Medi- cine, 163, 1524-1528. doi:10.1001/archinte.163.13.1524
[14] Kivipelto, M., Ngandu, T., Fratiglioni, L., Viitanen, M., Kareholt, I. Winblad, B., et al. (2005) Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Archives of Neurology, 62, 1556-1560. doi:10.1001/archneur.62.10.1556
[15] Balakrishnan, K., Verdile, G., Mehta, P.D., Beilby, J., No- lan, D., Galvao, D.A., et al. (2005) Plasma Abeta42 correlates positively with increased body fat in healthy indi- viduals. Journal of Alzheimer’s Disease, 8, 269-282.
[16] Hendrie, H.C., Ogunniyi, A., Hall, K.S., Baiyewu, O.F.W., Unverzagt, O., Gureje, et al., (2001) Inci-dence of demen- tia and Alzheimer disease in 2 communities: Yoruba re- siding in Ibadan, Nigeria, and African Americans residing in Indianapolis, Indiana. JAMA, 285, 739-747. doi:10.1001/jama.285.6.739
[17] Graves, A.B., Rajaram, L., Bowen, J.D., McCormick, W.C., McCurry, S.M. and Larson, E.B. (1999) Cognitive decline and Japanese culture in a cohort of older Japanese Americans in King County, WA: The Kame Project. The Journals of Gerontology. Series B, Psychological Sci- ences and Social Sciences, 54, S154-S161. doi:10.1093/geronb/54B.3.S154
[18] Engelhart, M.J., Geer-lings, M.I., Ruitenberg, A., Van Swieten, J.C., Hofman, A., Witteman, J.C., et al. (2002) Diet and risk of dementia: Does fat matter: The Rotterdam study. Neurology, 59, 1915-1921. doi:10.1212/01.WNL.0000038345.77753.46
[19] Pasinetti, G.M., Zhao, Z., Qin, W., Ho, L., Shrishailam, Y., Macgrogan, D., et al. (2007) Caloric intake and Alz- heimer’s disease. Experimental approaches and therapeutic implications. Interdis-ciplinary Topics in Gerontology, 35, 159-175.
[20] Greenwood, C.E. and Winocur, G. (1990) Learning and memory impairment in rats fed a high saturated fat diet. Behavioral and Neural Bi-ology, 53, 74-87. doi:10.1016/0163-1047(90)90831-P
[21] Martins, I.J. and Redgrave, T.G. (2004) Obesity and post- prandial lipid metabo-lism. Feast or famine? The Journal of Nutritional Biochemistry, 15, 130-141. doi:10.1016/j.jnutbio.2003.10.006
[22] Howard, B.V. (1999) Insulin resistance and lipid metabo- lism. American Journal of Cardiology, 84, 28J-32J. doi:10.1016/S0002-9149(99)00355-0
[23] Couillard, C., Bergeron, N., Bergeron, J., Pascot, A., Mau- riege, P., Tremblay, A., et al. (2000) Metabolic heteroge- neity underlying post-prandial lipemia among men with low fasting high density lipoprotein cholesterol concen- trations. The Journal of Clinical Endocrinology & Meta- bolism, 85, 4575-4582. doi:10.1210/jc.85.12.4575
[24] Maesako, M., Uemura, K., Kubota, M., Kuzuya, A., Sa- saki, K., Hayashida, N., et al. (2012) Exercise is more ef- fective than diet control in preventing high fat diet-induced beta-amyloid deposition and memory deficit in amy- loid precursor protein transgenic mice. The Journal of Bio- logical Chemistry, 287, 23024-23033. doi:10.1074/jbc.M112.367011
[25] Maesako, M., Uemura, K., Kubota, M., Kuzuya, A., Sa- saki, K., Asada, M., et al. (2012) Environmental enrich- ment ameliorated high-fat diet-induced Abeta deposition and memory deficit in APP transgenic mice. Neurobiol- ogy of Aging, 33, e11-e23.
[26] Boden, G. (1998) Free Fatty Acids (FFA), a link between obesity and insulin re-sistance. Frontiers in Bioscience, 3, d169-d175.
[27] Arner, P. (2002) Insulin resistance in type 2 diabetes: Role of fatty acids. Diabetes/Metabolism Research and Re- views, 18, S5-S9. doi:10.1002/dmrr.254
[28] Matsuzawa, Y., Shimomura, I., Nakamura, T., Keno, Y. and Tokunaga, K. (1994) Pathophysi-ology and pathoge- nesis of visceral fat obesity. Diabetes Re-search and Cli- nical Practice, 24, S111-S116. doi:10.1016/0168-8227(94)90236-4
[29] Das, U.N. (2006) Essential fatty acids: Biochemistry, phy- siology and pathology. Biotechnology Journal, 1, 420-439. doi:10.1002/biot.200600012
[30] Das, U.N. (2006) Essential fatty acids—A review. Cur- rent Pharmaceutical Biotechnology, 7, 467-482. doi:10.2174/138920106779116856
[31] Pettegrew, J.W., Panchalingam, K., Hamilton, R.L. and McClure, R.J. (2001) Brain membrane phospholipid al- terations in Alzheimer’s dis-ease. Neurochemical Research, 26, 771-782. doi:10.1023/A:1011603916962
[32] Prasad, M.R., Lovell, M.A., Yatin, M., Dhillon, H. and Markesbery, W.R. (1998) Regional membrane phosphol-ipid alterations in Alzheimer’s disease. Neurochemical Research, 23, 81-88. doi:10.1023/A:1022457605436
[33] Fewlass, D.C., Noboa, K., Pi-Sunyer, F.X., Johnston, J.M., Yan, S.D. and Tezapsidis, N. (2004) Obesity-related lep- tin regulates Alzheimer’s Abeta. FASEB Journal, 18, 1870-1878. doi:10.1096/fj.04-2572com
[34] Considine, R.V., Sinha, M.K., Heiman, M.L., Kriauciunas, A., Stephens, T.W., Nyce, M.R., et al. (1996) Serum im- munoreactive-leptin concentrations in normal-weight and obese humans. The New England Journal of Medicine, 334, 292-295. doi:10.1056/NEJM199602013340503
[35] Craft, S. (2007) Insulin resistance and Alzheimer’s dis- ease pathogenesis: Po-tential mechanisms and implica- tions for treatment. Current Alzheimer Research, 4, 147- 152. doi:10.2174/156720507780362137
[36] Craft, S. (2005) Insu-lin resistance syndrome and Alzhei- mer’s disease: Age- and obesity-related effects on mem- ory, amyloid, and inflammation. Neurobiology of Aging, 26, 65-69. doi:10.1016/j.neurobiolaging.2005.08.021
[37] Ho, L., Qin, W., Pompl, P.N., Xiang, Z., Wang, J., Zhao, Z., et al. (2004) Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB Journal, 18, 902-904.
[38] Zhao, Z., Xiang, Z., Haroutunian, V., Buxbaum, J.D., Stetka, B. and Pasinetti, G.M. (2007) Insulin degrading enzyme activity selectively decreases in the hippo-campal formation of cases at high risk to develop Alzheimer’s disease. Neurobiology of Aging, 28, 824-830. doi:10.1016/j.neurobiolaging.2006.05.001
[39] Clandinin, M.T., Cheema, S., Field, C.J. and Baracos, V.E. (1993) Dietary lipids influence insulin action. Annals of the New York Academy of Sciences, 683, 151-163. doi:10.1111/j.1749-6632.1993.tb35701.x
[40] Storlien, L.H., Kriketos, A.D., Jenkins, A.B., Baur, L.A., Pan, D.A., Tapsell, L.C., et al. Does dietary fat influence insulin action? Annals of the New York Academy of Sci- ences, 827, 287-301. doi:10.1111/j.1749-6632.1997.tb51842.x
[41] Manco, M., Bertuzzi, A., Salinari, S., Scarfone, A., Cal- vani, M., Greco, A.V., et al. (2004) The ingestion of satu- rated fatty acid tria-cylglycerols acutely affects insulin se- cretion and insulin sen-sitivity in human subjects. British Journal of Nutrition, 92, 895-903. doi:10.1079/BJN20041268
[42] Hsu, C.P., Odewale, I., Al-cendor, R.R. and Sadoshima, J. (2008) Sirt1 protects the heart from aging and stress. Biological chemistry, 389, 221-231. doi:10.1515/BC.2008.032
[43] Borradaile, N.M. and Pickering, J.G. (2009) NAD(+), sirtuins, and cardiovascular disease. Current pharmaceutical design, 15, 110-117.
[44] Stein, S. and Matter, C.M. (2011) Protective roles of SIRT1 in atherosclerosis. Cell Cycle, 10, 640-647. doi:10.4161/cc.10.4.14863
[45] Shi, Y., Camici, G.G. and Luscher, T.F. (2010) Cardio- vascular determinants of life span. European Journal of Physiology, 459, 315-324.
[46] Purushotham, A., Schug, T.T., Xu, Q., Surapureddi, S., Guo, X. and Li, X. (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metabolism, 9, 327-338. doi:10.1016/j.cmet.2009.02.006
[47] Elliott, P.J. and Jirousek, M. (2008) Sirtuins: novel targets for metabolic disease. Current Opinion in Investigational Drugs, 9, 371-378.
[48] Colak, Y., Ozturk, O., Senates, E., Tuncer, I., Yorulmaz, E., Adali, G., et al., SIRT1 as a potential therapeutic target for treatment of nonalcoholic fatty liver disease. International Medical Journal of Experimental and Clinical Research, 17, HY5-9.
[49] Zhang, Z., Lowry, S.F., Guarente, L. and Haimovich, B. (2010) Roles of SIRT1 in the acute and restorative phases following induction of inflammation. The Journal of Bio- logical Chemistry, 285, 41391-41401. doi:10.1074/jbc.M110.174482
[50] Yoshizaki, T., Milne, J.C., Imamura, T., Schenk, S., So- noda, N., Babendure, J.L., et al., SIRT1 exerts anti-inflam- matory effects and improves insulin sensitivity in adipo- cytes. Molecular and Cellular Biology, 29, 1363-1374. doi:10.1128/MCB.00705-08
[51] Sasaki, T. and Kitamura, T. (2010) Roles of FoxO1 and Sirt1 in the central regulation of food intake. Endocrine Journal, 57, 939-946. doi:10.1507/endocrj.K10E-320
[52] Michan, S., Li, Y., Chou, M.M., Parrella, E., Ge, H., Long, J.M., et al. (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. The Journal of Neurosci- ence, 30, 9695-9707.
[53] Gao, J., Wang, W.Y., Mao, Y.W., Graff, J., Guan, J.S., Pan, L., et al. (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature, 466, 1105-1109. doi:10.1038/nature09271
[54] Guarente, L., Mitochondria—A nexus for aging, calorie restriction, and sirtuins? Cell, 132, 171-176. doi:10.1016/j.cell.2008.01.007
[55] Libert, S., Cohen, D. and Guarente, L. (2008) Neurogenesis directed by Sirt1. Nature Cell Biology, 10, 373-374. doi:10.1038/ncb0408-373
[56] Silva, J.P. and Wahlestedt, C. (2010) Role of Sirtuin 1 in metabolic regulation. Drug Discovery Today, 15, 781-791. doi:10.1016/j.drudis.2010.07.001
[57] Schug, T.T. and Li, X. (2011) Sirtuin 1 in lipid metabo- lism and obesity. Annals of Medicine, 43, 198-211. doi:10.3109/07853890.2010.547211
[58] Cakir, I., Perello, M., Lansari, O., Messier, N.J., Vaslet, C.A. and Nillni, E.A. (2009) Hypothalamic Sirt1 regula- tes food intake in a rodent model system. PLoS One, 4, e8322. doi:10.1371/journal.pone.0008322
[59] Guarente, L. (2007) Sirtuins in aging and disease. Cold Spring Harbor Symposia on Quantitative Biology, 72, 483-488. doi:10.1101/sqb.2007.72.024
[60] Qin, W., Yang, T., Ho, L., Zhao, Z., Wang, J., Chen, L., et al. (2006) Neuronal SIRT1 activation as a novel mecha- nism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. The Jour- nal of Biological Chemistry, 281, 21745-21754. doi:10.1074/jbc.M602909200
[61] Pfluger, P.T., Herranz, D., Velasco-Miguel, S., Serrano, M. and Tschop, M.H. (2008) Sirt1 protects against high-fat diet-induced metabolic damage. Pro-ceedings of the National Academy of Sciences of the United States of Amer- ica, 105, 9793-9798. doi:10.1073/pnas.0802917105
[62] Deng, X.Q., Chen, L.L. and Li, N.X. (2007) The expres- sion of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Official Journal of the Interna- tional Association for the Study of the Liver, 27, 708-715.
[63] Havel, P.J., Townsend, R., Chaump, L. and Teff, K. (1999) High-fat meals reduce 24-h circulating leptin concentra- tions in women. Diabetes, 48, 334-341. doi:10.2337/diabetes.48.2.334
[64] Lomb, D.J., Laurent, G. and Haigis, M.C. (2010) Sirtuins regulate key aspects of lipid metabolism. Biochimica et Biophysica Acta, 1804, 1652-1657. doi:10.1016/j.bbapap.2009.11.021
[65] Xie, H., Lim, B. and Lodish, H.F. (2009) MicroRNAs induced during adipogenesis that accelerate fat cell de- velopment are downregulated in obesity. Diabetes, 58, 1050-1057. doi:10.2337/db08-1299
[66] Lee, Y.H., W.G. Tharp, R.L. Maple, S. Nair, P.A. Permana, and R.E. Pratley, Amyloid precursor protein expression is upregulated in adipocytes in obesity. Obesity, 2008. 16(7): p. 1493-500. doi:10.1038/oby.2008.267
[67] Lee, Y.H., Martin, J.M., Maple, R.L., Tharp, W.G. and Pratley, R.E. (2009) Plasma amyloid-beta peptide levels correlate with adipocyte amyloid precursor protein gene expression in obese individuals. Neuroendocrinology, 90, 383-390. doi:10.1159/000235555
[68] Leahey, T.M., Myers, T.A., Gunstad, J., Glickman, E., Spitznagel, M.B., Alexander, T., et al., Abeta40 is associ- ated with cognitive function, body fat and physical fitness in healthy older adults. Nutritional Neuroscience, 10, 205-209. doi:10.1080/10284150701676156
[69] Holden, K.F., Lindquist, K., Tylavsky, F.A., Rosano, C., Harris, T.B. and Yaffe, K. (2009) Serum leptin level and cognition in the elderly: Findings from the health ABC study. Neurobiology of Aging, 30, 1483-1489. doi:10.1016/j.neurobiolaging.2007.11.024
[70] Gan, L. (2007) Therapeutic potential of sirtuin-activating compounds in Alz-heimer’s disease. Drug News & Per- spectives, 20, 233-239. doi:10.1358/dnp.2007.20.4.1101162
[71] Kim, D., Nguyen, M.D., Dobbin, M.M., Fischer, A., Sa- nanbenesi, F., Rodgers, J.T., et al. (2007) SIRT1 deacety- lase protects against neu-rodegeneration in models for Al- zheimer’s disease and amyo-trophic lateral sclerosis. EMBO Journal, 26, 3169-3179. doi:10.1038/sj.emboj.7601758
[72] Donmez, G., Wang, D., Cohen, D.E. and Guarente, L. (2010) SIRT1 suppresses beta-amyloid production by ac- tivating the alpha-secretase gene ADAM10. Cell, 142, 320-332. doi:10.1016/j.cell.2010.06.020
[73] Garaulet, M., Esteban Tardido, A., Lee, Y.C., Smith, C.E., Parnell, L.D. and Ordovas, J.M. (2012) SIRT1 and CLOCK 3111T>C combined genotype is associated with evening preference and weight loss resistance in a beha- vioral therapy treatment for obesity. International Journal of Obesity.
[74] Feige, J.N. and Auwerx, J. (2007) DisSIRTing on LXR and cholesterol metabolism. Cell Metabolism, 6, 343-345. doi:10.1016/j.cmet.2007.10.003
[75] Li, X., Zhang, S., Blander, G., Tse, J.G., Krieger, M. and Guarente, L. (2007) SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Molecular Cell, 28, 91-106. doi:10.1016/j.molcel.2007.07.032
[76] Cao, G., Bales, K.R., DeMattos, R.B. and Paul, S.M. (2007) Liver X recep-tor-mediated gene regulation and cholesterol homeostasis in brain: Relevance to Alzhei- mer’s disease therapeutics. Current Alzheimer Research, 4, 179-184. doi:10.2174/156720507780362173
[77] Kawai, M. and Rosen, C.J. (2010) PPARgamma: A cir- cadian transcription factor in adipogenesis and osteoge- nesis. Nature Reviews Endocrinology, 6, 629-636. doi:10.1038/nrendo.2010.155
[78] Shimoyama, Y., Suzuki, K., Hamajima, N. and Niwa, T. (2011) Sirtuin 1 gene polymor-phisms are associated with body fat and blood pressure in Japanese. Translational Research, 157, 339-347. doi:10.1016/j.trsl.2011.02.004
[79] Shimoyama, Y., Mitsuda, Y., Tsuruta, Y., Suzuki, K., Hamajima, N. and Niwa, T. (2012) SIRTUIN 1 gene polymorphisms are associated with cholesterol metabolism and coronary artery calcification in Japanese hemo-dialysis patients. Journal of Renal Nutrition, 22, 114-119. doi:10.1053/j.jrn.2011.10.025
[80] Clark, S.J., Falchi, M., Olsson, B., Jacobson, P., Cauchi, S., Balkau, B., et al. (2012) Association of sirtuin 1 (SIRT1) gene SNPs and transcript ex-pression levels with severe obesity. Obesity (Silver Spring), 20, 178-185. doi:10.1038/oby.2011.200
[81] Naqvi, A., Hoffman, T.A., DeRicco, J., Kumar, A., Kim, C.S., Jung, S.B., et al. (2010) A single-nucleotide varia- tion in a p53-binding site affects nutrient-sensitive human SIRT1 expression. Human Molecular Ge-netics, 19, 4123- 4133. doi:10.1093/hmg/ddq331
[82] Flachsbart, F., Croucher, P.J., Nikolaus, S., Hampe, J., Cordes, C., Schreiber, S., et al. (2006) Sirtuin 1 (SIRT1) sequence variation is not associated with exceptional hu- man longevity. Experimental Gerontology, 41, 98-102. doi:10.1016/j.exger.2005.09.008
[83] Tsiotra, P.C. and Tsigos, C. (2006) Stress, the endoplas- mic reticulum, and insulin re-sistance. Annals of the New York Academy of Sciences, 1083, 63-76. doi:10.1196/annals.1367.007
[84] Li, Y., Xu, S., Giles, A., Nakamura, K., Lee, J.W., Hou, X., et al. (2011) Hepatic over-expression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resis- tance in the liver. FASEB Journal, 25, 1664-1679. doi:10.1096/fj.10-173492
[85] Jung, T.W., Lee, K.T., Lee, M.W. and Ka, K.H. (2012) SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150. Bio-chemical and Biophysical Research Communications, 422, 229-232. doi:10.1016/j.bbrc.2012.04.129
[86] Marton, O., Koltai, E., Nyakas, C., Bakonyi, T., Zen- teno-Savin, T., Kumagai, S., et al. (2010) Aging and ex- ercise affect the level of protein acetylation and SIRT1 activity in cerebellum of male rats. Biogerontology, 11 679-686. doi:10.1007/s10522-010-9279-2
[87] Ferrara, N., Rinaldi, B., Corbi, G., Conti, V., Stiuso, P., Boccuti, S., et al. (2008) Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Research, 11, 139-150. doi:10.1089/rej.2007.0576
[88] Grant, W.B., Campbell, A., Itzhaki, R.F. and Savory, J. (2002) The significance of envi-ronmental factors in the etiology of Alzheimer’s disease. Journal of Alzheimers Disease, 4, 79-189.
[89] Solfrizzi, V., Panza, F. and Capurso, A. (2003) The role of diet in cognitive decline. Journal of Neural Transmission, 110, 95-110.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.