Fully On-Chip Integrated Photodetector Front-End Dedicated to Real-Time Portable Optical Brain Imaging

Abstract

Optical brain imaging using functional near infra-red spectroscopy (fNIRS) offers a portable and noninvasive tool for monitoring of blood oxygenation. In this paper we have introduced a new miniaturized photodetector front-end on achip to be applied in a portable fNIRS system. It includes silicon avalanche photodiodes (SiAPD), Transimpedance amplifier (TIA) front-end and Quench-Reset circuitry to operate in both linear and Geiger modes. So it can be applied for both continuous-wave fNIRS (CW-fNIRS) and also single-photon counting. Proposed SiAPD exhibits high-avalanche gain (>100), low-breakdown voltage (<12 V) and high photon detection efficiency accompanying with low dark count rates. The proposed TIA front-end offer a low power consumption (<1 mW), high-transimpedance gain (up to 250 MV/A), tunable bandwidth (1 kHz - 1 GHz) and very low input and output noise (~few fA/√Hz and few μV/√Hz). The Geiger-mode photon counting front-end also exhibits a controllable hold-off and rest time with an ultra fast quench-reset time (few ns). This integrated system has been implemented using submicron (0.35 μm) standard CMOS technology.

Share and Cite:

E. Kamrani, F. Lesage and M. Sawan, "Fully On-Chip Integrated Photodetector Front-End Dedicated to Real-Time Portable Optical Brain Imaging," Optics and Photonics Journal, Vol. 2 No. 4, 2012, pp. 300-313. doi: 10.4236/opj.2012.24037.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. G. Webster, “Medical Instrumentation, Application and Design,” John Wiley & Sons Inc., Hoboken, 2010.
[2] R. F. Yazicioglu, C. Van Hoof and R. Puers, “Biopotential Readout Circuits for Portable Acquisition Systems,” Springer, Berlin, 2009. doi:10.1007/978-1-4020-9093-6
[3] V. Peluso, P. Vancorenland, M. Steyaert and W. Sansen, “900 mV Differential Class AB OTA for Switched Opamp Applications,” Electronics Letters, Vol. 33, No. 17, 1997, pp. 1455-1456. doi:10.1049/el:19970964
[4] H. F. Achiguia, M. Sawana and C. J. B. Fayomi, “A Monolithic Based NIRS Front-End Wireless Sensor,” Microelectronics Journal, 39, 10, 2008, pp. 1209-1217. doi:10.1016/j.mejo.2008.01.055
[5] K. Phang, “CMOS Optical Preamplifier Design Using Graphical Circuit Analysis,” PhD Thesis, Department of Electrical and Computer Engineering, University of Toronto, Toronto, 2001.
[6] B. Wilson and J. D. Drew, “Novel Transimpedance Amplifier Formulation Exhibiting Gain-Bandwidth Independence,” IEEE International Symposium on Circuits and Systems, Vol. 1, 1997, pp. 169-172. doi:10.1109/ISCAS.1997.608649
[7] B. Razavi, “A 622Mb/s 4.5 pA/√Hz CMOS Transimpedance Amplifier,” IEEE International Solid-State Circuits Conference, San Francisco, 7-9 February 2000, pp. 162-163. doi:10.1109/ISSCC.2000.839732
[8] M. Ingels and M. Steyaert, “A 1-Gbit/s, 0.7-μm CMOS Optical Receiver with Full Rail-to-Rail Output Swing,” IEEE Journal of Solid State Circuits, Vol. 34, No. 7, 1999, pp. 971-977. doi:10.1109/4.772412
[9] I. Song, “Multi-Gbit/s CMOS Transimpedance Amplifier with Integrated Photodetector for Optical Interconnects,” A Ph.D. Thesis Presented to The Academic Faculty, Georgia Institute of Technology, Atlanta, 2004.
[10] M. Nakamura and N. Ishihara, “1.2V, 35 mW CMOS Optical Transceiver ICs for 50 Mbit/s Burst-Mode Communication,” Electronic Letters, Vol. 35, No. 5, pp. 394-395, 4 March 1999. doi:10.1049/el:19990270
[11] Q. Yang, “Design of Front-End Amplifier for Optical Receiver in 0.5 Micrometer CMOS Technology,” MSc Thesis, University of Hawai, Hawai, 2005.
[12] F. Zappa, S. Tisa, A. Tosi and S. Cova, “Principles and Features of Single-Photon Avalanche Diode Arrays,” Sensors and Actuators A, Vol. 140, No. 1, 2007, pp. 103-112. doi:10.1016/j.sna.2007.06.021
[13] E. Kamrani, F. Lesage and M. Sawan, “Premature Edge Breakdown Prevention Techniques in APD Fabrication,” The 10th IEEE International NEWCAS Conference, Montreal, 17-20 June 2012, Montreal, pp. 345-348. doi:10.1109/NEWCAS.2012.6329027
[14] E. Kamrani and M. Sawan, “Fully Integrated CMOS Avalanche Photodiode and Distributed-Gain TIA for CW-fNIRS,” The IEEE Biomedical Circuits and Systems Conference (BioCAS2011), San Diego, 10-12 November 2011, pp. 317-320. doi:10.1109/BioCAS.2011.6107791
[15] E. Kamrani, A. Sultana and M. Sawan, “Tunable, Low-Power, High-Gain Transimpedance Amplifier for fNIRS Photoreceiver Front-End,” The 54th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Seoul, 7-10 August 2011, pp. 1-4. doi:10.1109/MWSCAS.2011.6026338
[16] M. Razeghi, “Technology of Quantum Devices,” Springer Press, London, 2010. doi:10.1007/978-1-4419-1056-1
[17] E. Kamrani, S. H. Andy Yun, F. Lesage and M. Sawan, “Near Infra-Red Light Detection Using Silicon Avalanche Photodiodes: Design Challenges in Standard CMOS Technology,” Proceedings of SPIE, MIOMD-XI: 11th International Conference on Infrared Optoelectronics: Materials and Devices, Chicago, 4-8 September 2012.
[18] B. Huang, X. Zhang and H. Chen, “1 Gb/s Zero Pole Cancellation CMOS Transimpednace Amplifier for Gigabit Ethernet Applications,” Journal of Semiconductors, Vol. 30, No. 10, 2009.
[19] S. Cova, “Active Quenching Circuit for Avalanche Photodiodes,” US Patent 4,963,727 (Italian Patent 22367A/88); Licensed for Industrial Production to Silena SpA, Milano, 1990.
[20] Y. Kim, I. Jun and K. H. Kim, “Design and Characterization of CMOS Avalanche Photodiode with Charge Sensitive Preamplifier,” IEEE Transactions on Nuclear Science, Vol. 55, No. 3, 2008, pp. 1376-1380. doi:10.1109/TNS.2008.924063
[21] E. Roncali and S. R. Cherry, “Application of Silicon Photomultipliers to Positron Emission Tomography,” Annals of Biomedical Engineering, Vol. 39, No. 4, 2011, pp. 1358-1377. doi:10.1007/s10439-011-0266-9
[22] S. Tisa, F. Zappa, A. Tosi and S. Cova, “Electronics for Single Photon Avalanche Diode Arrays,” Sensors and Actuators A, Vol. 140, No. 1, 2007, pp. 113-122. doi:10.1016/j.sna.2007.06.022
[23] S. Tisa, A. Tosi and F. Zappa, “Fully-Integrated CMOS Single Photon Counter,” Optics Express, Vol. 15, No. 6, 2007, pp. 2873-2887. doi:10.1364/OE.15.002873
[24] V. Peluso, P. Vancorenland, M. Steyaert and W. Sansen, “900 mV Differential Class AB OTA for Switched Opamp Applications,” Electronics Letters, Vol. 33, No. 17, 1997, pp. 1455-1456. doi:10.1049/el:19970964
[25] B. Wilson and J. D. Drew, “Novel Transimpedance Amplifier Formulation Exhibiting Gain-Bandwidth Independence,” IEEE Proceedings of International Symposium on Circuits Systems, Vol. 1, 1997, pp. 169-172.
[26] M. Tavakoli, L. Turicchia and R. Sarpeshkar, “An Ultra-Low-Power Pulse Oximeter Implemented with an Energy-Efficient Transimpedance Amplifier,” IEEE Transactions on Biomedical Circuits and Systems, Vol. 4, No. 1, 2010, pp. 27-38. doi:10.1109/TBCAS.2009.2033035
[27] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” Cambridge University Press, Cambridge, 1998. doi:10.1017/CBO9780511817281
[28] R. Sarpeshkar, R. F. Lyon, and C. A. Mead, “A Low-Power Wide-Dynamic-Range Analog VLSI Cochlea,” Analog Integrated Circuits and Signal Processing, Vol. 16, No. 3, 1998, pp. 245-274. doi:10.1023/A:1008218308069
[29] Q. Yang, “Design of Front-End Amplifier for Optical Receiver in 0.5 Micrometer CMOS Technology,” MSc Thesis, University of Hawai, Hawai, 2005.
[30] W.-Y. Choi, M.-J. Lee and J.-S. Youn, “Si Integrated Photoreceivers,” 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Austin, 4-6 October 2010, pp. 77-81. doi:10.1109/BIPOL.2010.5667948
[31] S. Radovanovic, A.-J. Annema and B. Nauta, “A 3Gb/s Optical Detector in Standard CMOS for 850 nm Optical Communication,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 8, 2005, pp. 1706-1717. doi:10.1109/JSSC.2005.852030
[32] W.-Z. Chen, S.-H. Huang, G.-W. Wu, C.-C. Liu, Y.-T. Huang, C.-F. Chiu, W.-H. Chang and Y.-Z. Juang, “A 3.125 Gbps CMOS Fully Integrated Optical Receiver with Adaptive Analog Equalizer,” Proceedings of IEEE Asian Solid-State Circuits Conference, Jeju, 12-14 November 2007, pp. 396-399. doi:10.1109/ASSCC.2007.4425714
[33] F. Tavernier and M. Steyaert, “Power Efficient 4. 5Gbit/s Optical Receiver in 130 nm CMOS with Integrated Photodiode,” Proceedings of European Solid-State Circuits Conference, Edinburgh, 15-19 September 2008, pp. 162-165.
[34] W.-Z. Chen and S.-H. Huang, “A 2.5 Gbps CMOS Fully Integrated Optical Receiver with Lateral PIN Detector,” Proceedings of Custom Integrated Circuits Conference, San Jose, 16-19 September 2007, pp. 293-296. doi:10.1109/CICC.2007.4405736
[35] J.-S. Youn, H.-S. Kang, M.-J. Lee, K.-Y. Park and W.-Y. Choi, “High-Speed CMOS Integrated Optical Receiver with an Avalanche Photodetector,” IEEE Photonics Technology Letters, Vol. 21, No. 20, 2009, pp. 1553-1555. doi:10.1109/LPT.2009.2029869
[36] A. Sultana, E. Kamrani and M. Sawan, “CMOS Silicon Avalanche Photodiodes for NIR Light Detection: A Survey,” Journal of Analog Integrated Circuits and Signal Processing, 2012, pp. 1-13. doi:10.1007/s10470-011-9641-6
[37] J.-S. Youn, M.-J. Lee, K.-Y. Park, H. Rücker and W.-Y. Choi, “7-Gb/s Monolithic Photoreceiver Fabricated with 0.25-μm SiGe BiCMOS Technology,” IEICE Electronics Express, Vol. 7, No. 9, 2010, pp. 659-665. doi:10.1587/elex.7.659
[38] E. Kamrani, S. H. A. Yun, F. Lesage and M. Sawan, “State-of-the-Art Logarithmic Transimpedance Amplifier with Automatic Gain Control and Ambient Light Rejection for fNIRS,” Proceedings of SPIE MIOMD-XI, Chicago, 4-8 September 2012, pp. 58-59.
[39] E. Kamrani, S. H. Andy Yun, F. Lesage and M. Sawan, “Optimal-Adaptive Control System for Low-Noise, LowPower and Fast Photodetection in Functional Near InfraRed Spectroscopy,” Proceedings of SPIE, MIOMD-XI, Chicago, 4-8 September 2012.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.