The Effect of the Monosubstituted Benzenes Functional Groups on the Inhibition of Methane Gas Biosynthesis

Abstract

Aromatic compounds are inhibitors of methane biosynthesis in anaerobic treatment of solid wastes and industrial effluents. Anaerobic treatment of solid wastes and industrial effluents may be limited by the methanogenic bacteria inhibition exerted by these types of compounds, the production of biogas is not possible and the organic matter contained in the effluent is not reduced. These effluents poured in the nature can be the basis of the pollution. The objective of this study is to evaluate the effect of monosubstituted aromatic compounds functional groups on the methanogenic inhibition. The toxicity to acetoclastic methanogenic bacteria has performed in serum flasks, utilizing digested pig manure as inoculums, by measuring methane production. The nature of aromatic functional groups was observed to have a profound effect on the toxicity of the monosubstituted aromatics. Among the monosubstituted aromatic, the chlorobenzene was the most toxic with 50% of inhibition occurring at the concentration of 30.08 mg/l. In contrast, benzoic acid is the least inhibitory with IC50 of 2515.20 mg/l. The partition coefficient octanol/water (logPoct), an indicator of hydrophobicity, had a significant correlation with the methanogenic toxicity.

Share and Cite:

Kayembe, K. , Basosila, L. , Mpiana, P. , Makambo, L. , Sikulisimwa, P. , Tshibangu, D. , Tshilanda, D. and Tati, R. (2012) The Effect of the Monosubstituted Benzenes Functional Groups on the Inhibition of Methane Gas Biosynthesis. Journal of Sustainable Bioenergy Systems, 2, 92-96. doi: 10.4236/jsbs.2012.24013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Saidi and B. Abada, “La Biométhanisation: Une Solution Pour Un Développement Durable,”Revue des Energies Renouvelables, CER’07, Oujda, 2007.
[2] K. Kayembe, “Production d’Energie par la Bioconversion des Déchets Agro-Industriels en Méthane,” Master’s Thesis, University of Kinshasa, Kinshasa, 1983.
[3] G. Lettinga and L. W. Hulshoff Pol, “Anaerobic Reactor Technology,” IHE-Delft & WAU, Wageningen, 1990.
[4] K. Mbuyu and K. Kayembe, “Production du Méthane (Biogaz) par la Digestion Anaérobie des Drêches de Brasseries et des Lisiers de Vaches,”Revue Congolaise des sciences Nucléaires, Vol. 16, No. 2, 2000, pp 47-62.
[5] Y. Chen, J. J. Cheng and K. S. Creamer, “Inhibition of Anaerobic Digestion Process: A Review,” Bioresource Technology, Vol. 99, No. 10, 2008, pp. 4044-4064. doi:10.1016/j.biortech.2007.01.057
[6] H. H. P. Fang, “Inhibition of Bioactivity of UASB Biogranules by Electroplating Metals,” Pure and Applied Chemistry, Vol. 69, No. 11, 1997, pp. 2426-2429. doi:10.1351/pac199769112425
[7] Y. Wang, Y. Zhang, J. Wang and L. Meng, “Effects of Volatile Fatty Acid Concentrations on Methane Yield and Methanogenic Bacteria,” Biomass and Bioenergy, Vol. 33, No. 5, 2009, pp. 848-853. doi:10.1016/j.biombioe.2009.01.007
[8] R. Sierra and G. Lettinga., “The Role of Aromatic Structure on Methanogenic Toxicity,” Medical Faculty Land Boww Rijks University of Gent (Belgium), Vol. 4, No. 4b, 1989, pp. 1437-1474
[9] C. Hecht and C. Greihl, “Investigation of the Accumulation of Aromatic Compounds during Biogas Production from Kitchen Waste,” Bioresource Technology, Vol. 100, No. 2, 2009, pp. 654-658. doi:10.1016/j.biortech.2008.07.034
[10] B. A. Donlon, E. Razo-Flores, J. A. Field and G. Lettinga, “Toxicity of N-Substituted Aromatics to Acetoclastic Methanogenic Activity in Granular Sludge,” Applied and Environmental Microbiology, Vol. 61, No. 11, 1995, pp. 3889-3893.
[11] S. Kalyuzhnyi, V. Sklyar, T. Mosolova, I. Kucherenko, J. A. Russkova and N. Degtyaryova, “Methanogenic Biodegradation of Aromatic Amines,” Water Science and Technology, Vol. 42, No. 5-6, 2000, pp. 370-383.
[12] J. Field and R. Sierra, “Waste Characteristics and Factors Affecting Reactor Performance,” IHE-Delft & WAU, Wageningen, 1990.
[13] K. Mbuyu and K. Kayembe, “Etude de la Toxicité Méthanogénique des Cations K+ et Na+,”Revue Congolaise des sciences Nucléaires, Vol. 16, No. 2.2000, pp. 65-76.
[14] N. Mambanzulua, K. Kayembe and V. Noki, “Détermination des Activités Méthanogènes Spécifiques des Lisiers dans le Traitement Anaérobique des Dechets.” Medical Faculty Land Boww Rijks University of Gent (Belgium), Vol. 64, No. 1, 1999, pp. 183-188.
[15] K. Kobayashi, “Metabolism of Pentachlophenol in Fish,” Pesticide and Xenobiotic Metabolism in Aquatic Organisms, Vol. 99, 1979, pp. 131-143.
[16] J. Debord, “Coefficient de Partage,” 2012. http://www.unilim.fr/pages-peso
[17] P. T. Mpiana, “Biophysique Médicale,” Resud, Kinshasa, 2010.
[18] W. B. Whitman, T. Mothy, L. Bowen and D. R. Boone, “The Methanogenic Bacteria,” Prokaryotes, Vol. 3, 2006, pp. 165-208. doi:10.1007/0-387-30743-5_9

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.