Autoimmune Thyroid Disease Genes Identified in Non-Caucasians

Abstract

Autoimmune thyroid diseases (AITDs), including Graves’ disease (GD) and Hashimoto’s thyroiditis (HT), are among the commonest autoimmune disorders, affecting approximately 2% - 5% of the population. Epidemiological data support strong genetic influences on the development of AITD. The identification of genes placing individuals at an increased risk for the development of AITD has been a slow process. However, over the last 20 years or so real progress has been made with the mapping of novel loci, via a number of different approaches. The first AITD gene discovered, Human Leucocyte Antigen (HLA)/Major Histocompatibility Complex (MHC), is associated with both GD and HT. Non-MHC genes that confer susceptibility to AITD can be classified into two groups: (1) immune-regulatory genes (e.g., CD40, CTLA-4, and PTPN22); (2) thyroid-specific genes—thyroglobulin and TSH receptor genes. These genes interact with environmental factors, such as infection, likely through epigenetic mechanisms to trigger disease. In this review, we will summarize the latest findings on AITD susceptibility genes in non-Caucasians.

Share and Cite:

Y. Ban, Y. Ban and Y. Ban, "Autoimmune Thyroid Disease Genes Identified in Non-Caucasians," Open Journal of Endocrine and Metabolic Diseases, Vol. 2 No. 4, 2012, pp. 107-116. doi: 10.4236/ojemd.2012.24017.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Huber, F. Menconi, S. Corathers, E. M. Jacobson and Y. Tomer, “Joint Genetic Susceptibility to Type 1 Diabetes and Autoimmune Thyroiditis: From Epidemiology to Mechanisms,” Endocrine Reviews, Vol. 29, No. 6, 2008, pp. 697-725. doi:10.1210/er.2008-0015
[2] D. L. Jacobson, S. J. Gange, N. R. Rose and N. M. Graham, “Epidemiology and Estimated Population Burden of Selected Autoimmune Diseases in the United States,” Clinical Immunology and Immunopathology, Vol. 84, No. 3, 1997, pp. 223-243. doi:10.1006/clin.1997.4412
[3] A. P. Weetman, “Chronic Autoimmune Thyroiditis,” In: L. E. Braverman and R. D. Utiger, Eds., Werner and Ingbar’s Thyroid, Lippincott Williams and Wilkins, Philadelphia, 2000, pp. 721-732.
[4] F. Menconi, Y. L. Oppenheim and Y. Tomer, “Graves’ Disease,” In: Y. Shoenfeld, R. Cervera and M. E. Gershwin, Eds., Diagnostic Criteria in Autoimmune Diseases, Humana Press, Totowa, 2008, pp. 231-235. doi:10.1007/978-1-60327-285-8_44
[5] Y. Tomer and T. F. Davies, “Searching for the Autoimmune Thyroid Disease Susceptibility Genes: From Gene Mapping to Gene Function,” Endocrine Reviews, Vol. 24, No. 5, 2003, pp. 694-717. doi:10.1210/er.2002-0030
[6] V. Stenszky, L. Kozma, C. Balazs, S. Rochlitz, J. C. Bear and N. R. Farid, “The Genetics of Graves’ Disease: HLA and Disease Susceptibility,” The Journal of Clinical Endocrinology & Metabolism, Vol. 61, No. 4, 1985, pp. 735-740. doi:10.1210/jcem-61-4-735
[7] A. Mangklabruks, N. Cox and L. J. DeGroot, “Genetic Factors in Autoimmune Thyroid Disease Analyzed by Restriction Fragment Length Polymorphisms of Candidate Genes,” The Journal of Clinical Endocrinology & Metabolism, Vol. 73, No. 2, 1991, pp. 236-244. doi:10.1210/jcem-73-2-236
[8] J. M. Heward, A. Allahabadia, J. Daykin, et al., “Linkage Disequilibrium between the Human Leukocyte Antigen Class II Region of the Major Histocompatibility Complex and Graves’ Disease: Replication Using a Population Case Control and Family-Based Study,” The Journal of Clinical Endocrinology & Metabolism, Vol. 83, No. 10, 1998, pp. 3394-3397. doi:10.1210/jc.83.10.3394
[9] F. Menconi, M. C. Monti, D. A. Greenberg, et al., “Molecular Amino Acid Signatures in the MHC Class II Peptide-Binding Pocket Predispose to Autoimmune Thyroiditis in Humans and in Mice,” Procedings of National Academy Sciences of USA, 2008, pp. 14034-14039. doi:10.1073/pnas.0806584105
[10] A. A. Zeitlin, J. M. Heward, P. R. Newby, et al., “Analysis of HLA Class II Genes in Hashimoto’s Thyroiditis Reveals Differences Compared to Graves’ Disease,” Genes and Immunity, Vol. 9, No. 4, 2008, pp. 358-363. doi:10.1038/gene.2008.26
[11] Y. Ban, T. F. Davies, D. A. Greenberg, et al., “Arginine at Position 74 of the HLA-DRb1 Chain Is Associated with Graves’ Disease,” Genes and Immunity, Vol. 5, No. 3, 2004, pp. 203-208. doi:10.1038/sj.gene.6364059
[12] M. J. Simmonds, J. M. Howson, J. M. Heward, et al., “Regression Mapping of Association between the Human Leukocyte Antigen Region and Graves Disease,” American Journal of Human Immunology, Vol. 76, No. 1, 2005, pp. 157-163. doi:10.1086/426947
[13] M. J. Simmonds, J. M. Howson, J. M. Heward, et al., “A Novel and Major Association of HLA-C in Graves’ Disease that Eclipses the Classical HLA-DRB1 Effect,” Human Molecular Genetics, Vol. 16, No. 18, 2007, pp. 2149-2153. doi:10.1093/hmg/ddm165
[14] Yanagawa T, Hidaka Y, Guimaraes V, Soliman M, DeGroot LJ. CTLA-4 Gene Polymorphism Associated with Graves’ Disease in a Caucasian Population. J Clin Endocrinol Metab 1995;80:41-45. doi:10.1210/jc.80.1.41
[15] H. Ueda, J. M. Howson, L. Esposito, et al., “Association of the T Cell Regulatory Gene CTLA4 with Susceptibility to Autoimmune Disease,” Nature, Vol. 423, No. 6939, 2003, pp. 506 511. doi:10.1038/nature01621
[16] Y. Tomer, E. Concepcion and D. A. Greenberg, “A C/T Single Nucleotide Polymorphism in the Region of the CD40 Gene Is Associated with Graves’ Disease,” Thyroid, Vol. 12, No. 12, 2002, pp. 1129-1135. doi:10.1089/105072502321085234
[17] D. Smyth, J. D. Cooper, J. E. Collins, et al., “Replication of an Association between the Lymphoid Tyrosine Phosphatase Locus (LYP/PTPN22) with Type 1 Diabetes, and Evidence for Its Role as a General Autoimmunity Locus,” Diabetes, Vol. 53, No. 11, 2004, pp. 3020-3023. doi:10.2337/diabetes.53.11.3020
[18] Y. Tomer, D. A. Greenberg, E. Concepcion, Y. Ban and T. F. Davies, “Thyroglobulin Is a Thyroid Specific Gene for the Familial Autoimmune Thyroid Diseases,” The Journal of Clinical Endocrinology & Metabolism, Vol. 87, No. 1, 2002, pp. 404-407. doi:10.1210/jc.87.1.404
[19] J. E. Collins, J. M. Heward, J. Carr-Smith, J. Daykin, J. A. Franklyn, S. C. Gough, “Association of a Rare Thyroglobulin Gene Microsatellite Variant with Autoimmune Thyroid Disease,” The Journal of Clinical Endocrinology & Metabolism, Vol. 88, No. 10, 2003, pp. 5039-5042. doi:10.1210/jc.2003-030093
[20] B. M. Dechairo, D. Zabaneh, J. Collins, et al., “Association of the TSHR Gene with Graves’ Disease: The First Disease Specific Locus,” European Journal of Human Genetics, Vol. 13, No. 11, 2005, pp. 1223-1230. doi:10.1038/sj.ejhg.5201485
[21] J. A. Gebe, E. Swanson, W. W. Kwok, “HLA Class II Peptide-Binding and Autoimmunity,” Tissue Antigens, Vol. 59, No. 2, 2002, pp. 78-87. doi:10.1034/j.1399-0039.2002.590202.x
[22] E. M. Jacobson, A. Huber and Y. Tomer, “The HLA Gene Complex in Thyroid Autoimmunity: From Epidemiology to Etiology,” Journal of Autoimmunity, Vol. 30, No. 1-2, 2008, pp. 58-62.
[23] S. Saito, S. Ota, E. Yamada, H. Inoko and M. Ota, “Allele Frequencies and Haplotypic Associations Defined by Allelic DNA Typing at HLA Class I and Class II Loci in the Japanese Population,” Tissue Antigens, Vol. 56, No. 6, 2000, pp. 522-529. doi:10.1034/j.1399-0039.2000.560606.x
[24] R. P. Dong, A. Kimura, R. Okubo, et al., “HLA-A and DPB1 Loci Confer Susceptibility to Graves’ Disease,” Human Immunology, Vol. 35, No. 1-2, 1992, pp. 165-172. doi:10.1016/0198-8859(92)90101-R
[25] M. Takahashi, M. Yasunami, S. Kubota, H. Tamai and A. Kimura, “HLA-DPB1*0202 Is Associated with a Predictor of Good Prognosis of Graves’ Disease in Japanese,” Human Immunology, Vol. 67, No. 1-2, 2006, pp. 47-52. doi:10.1016/j.humimm.2006.02.023
[26] X. L. Wan, A. Kimura, R. P. Dong, K. Honda, H. Tamai and T. Sasazuki, “HLA-A and -DRB4 Genes in Controlling the Susceptibility to Hashimoto’s Thyroiditis,” Human Immunology, Vol. 42, No. 2, 1995, pp. 131-136. doi:10.1016/0198-8859(94)00089-9
[27] K. Nakabayashi, A. Tajima, K. Yamamoto, et al., “Identification of Independent Risk Loci for Graves’ Disease within the MHC in the Japanese Population,” Journal of Human Genetics, Vol. 56, No. 11, 2011, pp. 772-778. doi:10.1038/jhg.2011.99
[28] Y. Tomer, “Genetic Susceptibility to Autoimmune Thyroid Disease: Past, Present, and Future,” Thyroid, Vol. 20, No. 7, 2010, pp. 715-725. doi:10.1089/thy.2010.1644
[29] R. Khattri, J. A. Auger, M. D. Griffin, A. H. Sharpe and J. A. Bluestone, “Lymphoproliferative Disorder in CTLA-4 Knockout Mice Is Characterized by CD 28-Regulated Activation of Th2 Responses,” Journal of Immunology, Vol. 162, No. 10, 1999, pp. 5784-5791.
[30] M. M. Sale, T. Akamizu, T. D. Howard, et al., “Association of Autoimmune Thyroid Disease with a Microsatellite Marker for the Thyrotropin Receptor Gene and CTLA-4 in a Japanese Population,” Proceedings of the Association of American Physicians, Vol. 109, No. 5, 1997, pp. 453-461.
[31] T. Yanagawa, M. Taniyama, S. Enomoto, et al., “CTLA-4 Gene Polymorphism Confers Susceptibility to Graves’ Disease in Japanese,” Thyroid, Vol. 7, No. 6, 1997, pp. 843-846. doi:10.1089/thy.1997.7.843
[32] K. Furugaki, S. Shirasawa, N. Ishikawa, et al., “Association of the T-Cell Regulatory Gene CTLA-4 with Graves’ Disease and Autoimmune Thyroid Disease in the Japanese,” Journal of Human Genetics, Vol. 49, No. 3, 2004, pp. 166-168. doi:10.1007/s10038-003-0120-5
[33] Y. Ban, T. Tozaki, M. Taniyama, M. Tomita and Y. Ban, “Association of a CTLA-4 3’ Untranslated Region (CT60) Single Nucleotide Polymorphism with Autoimmune Thyroid Disease in the Japanese Population,” Autoimmunity, Vol. 38, No. 2, 2005, pp. 151-153. doi:10.1080/08916930500050319
[34] S. X. Zhao, C. M. Pan, H. M. Cao, et al., “Association of the CTLA-4 Gene with Graves’ Disease in the Chinese Han Population,” PLOS ONE, Vol. 5, No. 3, 2010, p. e9821. doi:10.1371/journal.pone.0009821
[35] M. Takahashi and A. Kimura, “HLA and CTLA-4 Polymorphisms May Confer a Synergistic Risk in the Susceptibility to Graves’ Disease,” Journal of Human Genetics, Vol. 55, No. 5, 2010, pp. 323-326. doi:10.1038/jhg.2010.20
[36] E. M. Jacobson and Y. Tomer, “The CD40, CTLA-4, Thyroglobulin, TSH Receptor, and PTPN22 Gene Quintet and Its Contribution to Thyroid Autoimmunity: Back to the Future,” Journal of Autoimmunity, Vol. 28, No. 2-3, 2007, pp. 85-89. doi:10.1016/j.jaut.2007.02.006
[37] Y. Ban, T. Tozaki, M. Taniyama, M. Tomita and Y. Ban, “Association of a C/T Single-Nucleotide Polymorphism in the 5’ Untranslated Region of the CD40 Gene with Graves’ Disease in Japanese,” Thyroid, Vol. 16, No. 5, 2006, pp. 443-446. doi:10.1089/thy.2006.16.443
[38] T. Mukai, Y. Hiromatsu, T. Fukutani, et al., “A C/T Polymorphism in the 5’ Untranslated Region of the CD40 Gene Is Associated with Later Onset of Graves’ Disease in Japanese,” Endocrine Journal, Vol. 52, No. 4, 2005, pp. 471-477. doi:10.1507/endocrj.52.471
[39] S. A. Chung and L. A. Criswell, “PTPN22: Its Role in SLE and Autoimmunity,” Autoimmunity, Vol. 40, No. 8, 2007, pp. 582-590. doi:10.1080/08916930701510848
[40] Y. Ban, T. Tozaki, M. Taniyama, M. Tomita and Y. Ban, “The Codon 620 Single Nucleotide Polymorphism of the Protein Tyrosine Phosphatase-22 Gene Does Not Contribute to Autoimmune Thyroid Disease Susceptibility in Japanese,” Thyroid, Vol. 15, No. 10, 2005, pp. 1115-1118. doi:10.1089/thy.2005.15.1115
[41] E. Kawasaki, T. Awata, H. Ikegami, et al., “Systematic Search for Single Nucleotide Polymorphisms in a Lymphoid Tyrosine Phosphatase Gene (PTPN22): Association between a Promoter Polymorphism and Type 1 Diabetes in Asian Populations,” American Journal of Medical Genetics A, Vol. 140, No. 6, 2006, pp. 586-593. doi:10.1002/ajmg.a.31124
[42] M. Ichimura, H. Kaku, T. Fukutani, et al., “Associations of Protein Tyrosine Phosphatase Nonreceptor 22 (PTPN22) Gene Polymorphisms with Susceptibility to Graves’ Disease in a Japanese Population,” Thyroid, Vol. 18, No. 6, 2008, pp. 625-630. doi:10.1089/thy.2007.0353
[43] V. E. Carlton, X. Hu, A. P. Chokkalingam, et al., “PTPN22 Genetic Variation: Evidence for Multiple Variants Associated with Rheumatoid Arthritis,” The American Journal of Human Genetics, Vol. 77, No. 4, 2005, pp. 567-581. doi:10.1086/468189
[44] M. Ichimura, H. Kaku, T. Fukutani, et al., “Associations of Protein Tyrosine Phosphatase Nonreceptor 22 (PTPN22) Gene Polymorphisms with Susceptibility to Graves’ Disease in a Japanese Population,” Thyroid, Vol. 18, No. 6, 2008, pp. 625-630. doi:10.1089/thy.2007.0353
[45] Y. Ban, T. Tozaki, M. Taniyama, et al., “Association of the Protein Tyrosine Phosphatase-22 (PTPN22) Haplotypes with Autoimmune Thyroid Disease in the Japanese Population,” Thyroid, Vol. 20, No. 8, 2010, pp. 893-899. doi:10.1089/thy.2010.0104
[46] S. Shirasawa, H. Harada, K. Furugaki, et al., “SNPs in the Promoter of a B Cell-Specific Antisense Transcript, SAS-ZFAT, Determine Susceptibility to Autoimmune Thyroid Disease,” Human Molecular Genetics, Vol. 13, No. 19, 2004, pp. 2221-2231. doi:10.1093/hmg/ddh245
[47] K. Sakai, S. Shirasawa, N. Ishikawa, et al., “Identification of Susceptibility Loci for Autoimmune Thyroid Disease to 5q31-q33 and Hashimoto’s Thyroiditis to 8q23-q24 by Multipoint Affected Sib-Pair Linkage Analysis in Japanese,” Human Molecular Genetics, Vol. 10, No. 13, 2001, pp. 1379-1386. doi:10.1093/hmg/10.13.1379
[48] M. Koyanagi, K. Nakabayashi, T. Fujimoto, et al., “ZFAT Expression in B and T Lymphocytes and Identification of ZFAT-Regulated Genes,” Genomics, Vol. 91, No. 5, 2008, pp. 451-457. doi:10.1016/j.ygeno.2008.01.009
[49] T. Fujimoto, K. Doi, M. Koyanagi, et al., “ZFAT Is an Antiapoptotic Molecule and Critical for Cell Survival in MOLT-4 Cells,” Federation of European Biochemical Societies, Vol. 583, No. 3, 2009, pp. 568-572. doi:10.1016/j.febslet.2008.12.063
[50] R. S. Davis, “Fc Receptor-Like Molecules,” Annual Review of Immunology, Vol. 25, No. 1, 2007, pp. 525-560. doi:10.1146/annurev.immunol.25.022106.141541
[51] P. Marrack, J. Kappler and B. L. Kotzin, “Autoimmune Disease: Why and Where It Occurs,” Nature Medicine, Vol. 7, No. 8, 2001, pp. 899-905. doi:10.1038/90935
[52] Y. Kochi, R. Yamada, A. Suzuki, et al., “A Functional Variant in FCRL3, Encoding Fc Receptor-Like 3, Is Associated with Rheumatoid Arthritis and Several Autoimmunities,” Nature Genetics, Vol. 37, No. 5, 2005, pp. 478-485. doi:10.1038/ng1540
[53] M. J. Simmonds, J. M. Heward, J. Carr-Smith, H. Foxall, J. A. Franklyn and S. C. Gough, “Contribution of Single Nucleotide Polymorphisms within FCRL3 and MAP3K7IP2 to the Pathogenesis of Graves’ Disease,” The Journal of Clinical Endocrinology & Metabolism, Vol. 91, No. 3, 2006, pp. 1056-1061. doi:10.1210/jc.2005-1634
[54] Wellcome Trust Case Control Consortium, “The Australo-Anglo-American Spodylitis Consortium. Association Scan of 14,500 Nonsynonymous SNPs in Four Diseases Identifies Autoimmunity Variants,” Nature Genetics, Vol. 39, No. 11, 2007, pp. 1329-1337.
[55] Y. Tomer, G. Barbesino, D. A Greenberg, E. S. Concepcion and T. F. Davies, “Mapping the Major Susceptibility Loci for Familial Graves’ and Hashimoto's Diseases: Evidence for Genetic Heterogeneity and Gene Interactions,” The Journal of Clinical Endocrinology & Metabolism, Vol. 84, No. 12, 1999, pp. 4656-4664. doi:10.1210/jc.84.12.4656
[56] J. C. Taylor, S. C. Gough, P. J. Hunt, T. H. Brix, K. Chatterjee, J. M. Connell, J. A. Franklyn, L. Hegedus, B. G. Robinson, W. M. Wiersinga, J. A. Wass, D. Zabaneh, I. Mackay and A. P. Weetman, “A Genome-wide Screen in 1119 Relative Pairs with Autoimmune Thyroid Disease,” The Journal of Clinical Endocrinology & Metabolism, Vol. 91, No. 2, 2005, pp. 646-653. doi:10.1210/jc.2005-0686
[57] H. Imrie, B. Vaidya, P. Perros, W. F. Kelly, A. D. Toft, E. T. Young and P. Kendall-Taylor, “Pearce SHS. Evidence for a Graves’ Disease Susceptibility Locus at Chromosome Xp11 in a United Kingdom Population,” The Journal of Clinical Endocrinology & Metabolism, Vol. 86, No. 2, 2001, pp. 626-630. doi:10.1210/jc.86.2.626
[58] Y. Tomer, Y. Ban, E. Concepcion, G. Barbesino, R. Villanueva, D. A. Greenberg and T. F. Davies “Common and Unique Susceptibility Loci in Graves and Hashimoto Diseases: Results of Whole-Genome Screening in a Data Set of 102 Multiplex Families,” The American Journal of Human Genetics, Vol. 73, No. 4, 2003, pp. 736-747. doi:10.1086/378588
[59] G. C. Ebers, K. Kukay, D. E. Bulman, A. D. Sadovnick, G. Rice, C. Anderson, H. Armstrong, K. Cousin, R. B. Bell, W. Hader, D. W. Paty, S. Hashimoto, J. Oger, P. Duquette, S. Warren, T. Gray, P. O’Connor, A. Nath, A. Auty, L. Metz, G. Francis, J. E. Paulseth, T. J. Murray, W. Pryse-Phillips, R. Nelson, M. Freedman, D. Brunet, J. P. Bouchard, D. Hinds and N. Risch, “A Full Genome Search in Multiple Sclerosis,” Nature Genetics, Vol. 13, No. 4, 1996, pp. 472-476. doi:10.1038/ng0896-472
[60] F. Cornélis, S. Fauré, M. Martinez, J.-F. Prud’homme, P. Fritz, C. Dib, H. Alves, P. Barrera, N. de Vries, A. Balsa, D. Pascual-Salcedo, K. Maenaut, R. Westhovens, P. Migliorini, T. H. Tran, A. Delaye, N. Prince, C. Lefevre, G. Thomas, M. Poirier, S. Soubigou, O. Alibert, S. Lasbleiz, S. Fouix, C. Bouchier, F. Lioté, M. N. Loste, V. Lepage, D. Charron, G. Gyapay, A. Lopes-Vaz, D. Kuntz, T. Bardin and J. Weissenbach, “ECRAF. New Susceptibility Locus for Rheumatoid Arthritis Suggested by a Genome-Wide Linkage
[61] F. Cucca, J. V. Goy, Y. Kawaguchi, L. Esposito, M. E. Merriman , A. J. Wilson, H. J. Cordell, S. C. Bain and J. A. Todd, “A Male-Female Bias in Type 1 Diabetes and Linkage to Chromosome Xp in MHC HLA-DR3-Positive Patients,” Nature Genetics, Vol. 19, No. 3, 1998, pp. 301-302. doi:10.1038/995
[62] W. M. Bassuny, K. Ihara, Y. Sasaki, R. Kuromaru, H. Kohno, N. Matsuura and T. Hara, “A Functional Polymorphism in the Promoter/Enhancer Region of the FOXP3/Scurfin Gene Associated with Type 1 Diabetes,” Immunogenetics, Vol. 55, No. 3, 2003, pp. 149-156. doi:10.1007/s00251-003-0559-8
[63] P. Zavattari, E. Deidda, M. Pitzalis, B. Zoa, L. Moi, R. Lampis, D. Contu, C. Motzo, P. Frongia, E. Angius, M. Maioli, J. A. Todd and F. Cucca, “No Association between Variation of the FOXP3 Gene and Common Type 1 Diabetes in the Sardinian Population,” Diabetes, Vol. 53, No. 7, 2004, pp. 1911-1914. doi:10.2337/diabetes.53.7.1911
[64] C. J. Owen, J. A. Eden, C. E. Jennings, V. Wilson, T. D. Cheetham and S. H. Pearce, “Genetic Association Studies of the FOXP3 Gene in Graves’ Disease and Autoimmune Addison’s Disease in the United Kingdom Population,” Journal of Molecular Endocrinology, Vol. 37, No. 1, 2006, pp. 97-104. doi:10.1677/jme.1.02072
[65] Y. Ban, T. Tozaki, T. Tobe, Y. Ban, E. M. Jacobson, E. S. Concepcion and Y. Tomer, “The Regulatory T Cell Gene FOXP3 and Genetic Susceptibility to Thyroid Autoimmunity: An Association Analysis in Caucasian and Japanese Cohorts,” Journal of Autoimmunity, Vol. 28, No. 4, 2007, pp. 201-207. doi:10.1016/j.jaut.2007.02.016
[66] N. Inoue, M. Watanabe, M. Morita, R. Tomizawa, T. Akamizu, K. Tatsumi, Y. Hidaka and Y. Iwatani, “Association of Functional Polymorphisms Related to the Transcriptional Level of FOXP3 with Prognosis of Autoimmune Thyroid Diseases,” Clinical & Experimental Immunology, Vol. 162, No. 3, 2010, pp. 402-406. doi:10.1111/j.1365-2249.2010.04229.x
[67] Y. Tomer, Y. Ban, E. Concepcion, et al., “Common and Unique Susceptibility Loci in Graves and Hashimoto Diseases: Results of Whole-Genome Screening in a Data Set of 102 Multiplex Families,” The American Journal of Human Genetics, Vol. 73, No. 4, 2003, pp. 736-747. doi:10.1086/378588
[68] Y. Ban, D. A. Greenberg, E. Concepcion, L. Skrabanek, R. Villanueva and Y. Tomer, “Amino Acid Substitutions in the Thyroglobulin Gene Are Associated with Susceptibility to Human and Murine Autoimmune Thyroid Disease,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 25, 2003, pp. 15119-15124. doi:10.1073/pnas.2434175100
[69] Y. Ban, T. Tozaki, M. Taniyama and M. Tomita, “Association of a Thyroglobulin Gene Polymorphism with Hashimoto’s Thyroiditis in the Japanese Population,” Clinical Endocrinology, Vol. 61, No. 2, 2004, pp. 263-268. doi:10.1111/j.1365-2265.2004.02096.x
[70] Y. Ban, T. Tozaki, M. Taniyama, L. Skrabanek, Y. Nakano and T. Hirano, “Multiple SNPs in Intron 41 of Thyroglobulin Gene Are Associated with Autoimmune Thyroid Disease in the Japanese Population,” PLOS ONE, Vol. 7, No. 5, 2012, p. e37501. doi:10.1371/journal.pone.0037501
[71] A. A. Zeitlin, M. J. Simmonds and S. C. L. Gough, “Genetic Developments in Autoimmune Thyroid Disease: An Evolutionary Process,” Clinical Endocrinology, Vol. 68, No. 5, 2008, pp. 671-682. doi:10.1111/j.1365-2265.2007.03075.x
[72] B. M. Dechairo, D. Zabaneh, J. Collins, et al., “Association of the TSHR Gene with Graves’ Disease: The First Disease Specific Locus,” European Journal of Human Genetics, Vol. 13, No. 11, 2005, pp. 1223-1230. doi:10.1038/sj.ejhg.5201485
[73] O. J. Brand, J. C. Barrett, M. J. Simmonds, et al., “Association of the Thyroid Stimulating Hormone Receptor Gene (TSHR) with Graves’ Disease,” Human Molecular Genetics, Vol. 18, No. 9, 2009, pp. 1704-1713. doi:10.1093/hmg/ddp087
[74] R. Ploski, O. J. Brand, B. Jurecka-Lubieniecka, et al., “Thyroid Stimulating Hormone Receptor (TSHR) Intron 1 Variants Are Major Risk Factors for Graves’ Disease in Three European Caucasian Cohorts,” PLOS ONE, Vol. 5, No. 11, 2010, p. e15512. doi:10.1371/journal.pone.0015512
[75] H. Hiratani, D. W. Bowden, S. Ikegami, et al., “Multiple SNPs in Intron 7 of Thyrotropin Receptor Are Associated with Graves’ Disease,” The Journal of Clinical Endocrinology & Metabolism, Vol. 90, No. 5, 2005, pp. 2898-2903. doi:10.1210/jc.2004-2148
[76] Y. Kochi, A. Suzuki, R. Yamada and K. Yamamoto, “Genetics of Rheumatoid Arthritis: Underlying Evidence of Ethnic Differences,’ Journal of Autoimmunity, Vol. 32, No. 3-4, 2009, pp. 158-162. doi:10.1016/j.jaut.2009.02.020
[77] R. H. Duerr, K. D. Taylor, S. R. Brant, et al., “A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene,” Science, Vol. 314, No. 5804, 2006, pp. 1461-1463. doi:10.1126/science.1135245
[78] J. Hampe, A. Franke, P. Rosenstiel, et al., “A Genome-Wide Association Scan of Nonsynonymous SNPs Identifies a Susceptibility Variant for Crohn Disease in ATG16L1,” Nature Genetics, Vol. 39, No. 2, 2007, pp. 207-211. doi:10.1038/ng1954
[79] R. Sladek, G. Rocheleau, J. Rung, et al., “A Genome-Wide Association Study Identifies Novel Risk Loci for Type 2 Diabetes,” Nature, Vol. 445, No. 7130, 2007, pp. 881-885. doi:10.1038/nature05616
[80] P. M. Gaffney, G. M. Kearns, K. B. Shark, et al., “A Genome-Wide Search for Susceptibility Genes in Human Systemic Lupus Erythematosus Sib-Pair Families,” Proceedings of the National Academy of Sciences of the USA, 8 December 1998, pp. 14875-14879. doi:10.1073/pnas.95.25.14875
[81] E. Jorgenson and J. S. Witte, “A Gene-Centric Approach to Genome-Wide Association Studies,” Nature Reviews Genetics, Vol. 7, No. 11, 2006, pp. 885-891. doi:10.1038/nrg1962
[82] S. Steer, V. Abkevich, A. Gutin, et al., “Genomic DNA Pooling for Whole—Genome Association Scans in Complex Disease: Empirical Demonstration of Efficacy in Rheumatoid Arthritis,” Genes and Immunity, Vol. 8, No. 1, 2007, pp. 57-68. doi:10.1038/sj.gene.6364359
[83] X. Chu, C.-M. Pan, S.-X. Zhao, et al., “A Genome-Wide Association Study Identifies Two New Risk Loci for Graves’ Disease,” Nature Genetics, Vol. 43, No. 9, 2011, pp. 897-901. doi:10.1038/ng.898
[84] J. D. Cooper, M. J. Simmonds, N. M. Walker, et al., “Seven Newly Identified Loci for Autoimmune Thyroid Disease,” Human Molecular Genetics, Vol. 21, No. 23, 2012. doi:10.1093/hmg/dds357
[85] M. Maierhaba, J. A. Zhang, Z. Y. Yu, et al., “Association of the Thyroglobulin Gene Polymorphism with Autoimmune Thyroid Disease in Chinese Population,” Endocrine, Vol. 33, No. 3, 2008, pp. 294-299. doi:10.1007/s12020-008-9082-x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.