Downregulation of transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF) in ehrlich ascites carcinoma-bearing mice using stearic acid-grafted carboxymethyl chitosan (SA-CMC)

Abstract

The present study was conducted to investigate the use of stearic acid-grafted carboxymethyl chitosan(SA-CMC) as a downregulator for trans- forming growth factor-β (TGF- β) and vascular endothelial growth factor (VEGF) in Ehrlich ascites carcinoma (EAC)-bearing mice. The antitumor effect of stearic acid-grafted carboxymethyl chitosan was assessed by the estimation of TGF- β and VEGF in serum in addition to the estimation of tumor volume, median survival time (MST), percentage of increase in life span (ILS%) as well as the contents of total lipid, DNA and RNA in liver tissues. Hematological profiles (hemoglobin, red blood cells, and platelets) were also assessed. In addition, liver function tests and the redox status were estimated. TGF- β, VEGF, DNA, RNA, and malondialdehyde (MDA) levels, in addition to serum alanine transaminase (ALT) and gamma glutamyl transferase (GGT) activities as well as total white blood cells counts and tumor volume were all highly significantly increased (P < 0.001) in untreated EAC-bearing mice compared to controls. However, hematological profiles, total lipid in liver tissues and serum albumin were highly decreased in EAC-bearing mice compared to controls. All these parameters were restored to the normal levels in SA-CMC treated EAC-bearing mice com- pared to the untreated EAC-bearing mice. It is thus concluded that stearic acid-grafted carboxymethyl chitosan has a remarkable antitumor activity against EAC in Swiss albino mice through downregulation of TGF-β and VEGF.

Share and Cite:

Habib, S. , Aggour, Y. and Taha, H. (2012) Downregulation of transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF) in ehrlich ascites carcinoma-bearing mice using stearic acid-grafted carboxymethyl chitosan (SA-CMC). Natural Science, 4, 808-818. doi: 10.4236/ns.2012.411108.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Ishikawa, K., Takenaga, K., Akimoto, M., Koshikawa, N., Yamaguchi, A., Imanishi, H., Nakada, K., Honma, Y., Hayashi, J. (2008) ROS generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science, 320, 661-664.
[2] Klaunig, J.E. and Kamendulis, L.M.T. (2004) The role of oxidative stress in carcinogenesis. Annual Review of Pharmacology and Toxicology, 44, 239-267. doi:10.1146/annurev.pharmtox.44.101802.121851
[3] Tudek, B., Winczura, A., Janik, J., Siomek, A., Foksinski, M. and Olinski, R. (2010) Involvement of oxidatively damaged DNA and repair in cancer development and aging. American Journal of Translational Research, 2, 254- 284.
[4] Halliwell, B. and Gutteridge, J.M.C. (2006) Free radicals in biology and medicine. 4th Edition, Clarendon Press, Oxford.
[5] Abdal Dayem, A., Choi, H.-Y., Kim, J.-H. and Cho, S.-G. (2010) Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers, 2, 859-884. doi:10.3390/cancers2020859
[6] Touati, D. (1997) Superoxide dismutases in bacteria and pathogen protests. In: Scandalios, J.G., Ed., Oxidative Stress and the Molecular Biology of Antioxidant Defenses, Cold Spring Harbor Laboratory, New York, 447-493.
[7] Pastore, A., Federici, G., Bertini, E. and Piemonte, F. (2003) Analysis of glutathione: Implication in redox and detoxification. Clinica Chimica Acta, 333, 19-39. doi:10.1016/S0009-8981(03)00200-6
[8] Guo, Z., Liu, H., Chen, X., Ji, X. and Li, P. (2006) Hydroxyl radicals scavenging activity of N-substituted chitosan and quaternized chitosan. Bioorganic & Medicinal Chemistry Letters, 16, 6348-6350. doi:10.1016/j.bmcl.2006.09.009
[9] Xing, R., Liu, S., Guo, Z. Y., Yu, H.H., Zhong, Z.M., Ji, X. and Li, P.C. (2008) Relevance of molecular weight of chitosan-N-2-hydroxypropyl trimethyl ammonium chloride and their antioxidant activities. European Journal of Medicinal Chemistry, 43, 336-340. doi:10.1016/j.ejmech.2007.03.025
[10] Dev, A., Mohan, J. C., Sreeja, V., Tamura, H., Patzke, G., R. Hussain, F., Weyeneth, S., Nair, S.V. and Jayakumar, R. (2010) Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydrate Polymers, 79, 1073-1079. doi:10.1016/j.carbpol.2009.10.038
[11] Riva, R., Ragelle, H., des Rieux, A., Duhem, N., Jér?me, C. and Préat, V. (2011) Chitosan and chitosan derivatives in drug delivery and tissue engineering. Advances in Polymer Science, 244, 19-44. doi:10.1007/12_2011_137
[12] Patale, R.L. and Patravale, V.B. (2011) N-carboxymethyl chitosan-zinc complex. A novel chitosan complex with enhanced antimicrobial activity. Carbohydrate Polymers, 85, 105-110. doi:10.1016/j.carbpol.2011.02.001
[13] Kim, S.K. and Rajapakse, N. (2005) Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydrate Polymers, 62, 357-368. doi:10.1016/j.carbpol.2005.08.012
[14] Kong, C.-S., Kim, J.-A., Byulnim, A., Byun, H.-G. and Kim, S.-K. (2010) Carboxymethylations of chitosan and chitin inhibit MMP expression and ROS scavenging in human fibrosarcoma cells. Process Biochemistry, 45, 179- 186. doi:10.1016/j.procbio.2009.09.004
[15] Hu, F.Q., Wu, X.L., Du, Y.Z., You, J. and Yuan, H. (2008) Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chatoyant oligosaccharide micelles encapsulating doxorubicin. European Journal of Pharmaceutics and Biopharmaceutics, 69, 117-125. doi:10.1016/j.ejpb.2007.09.018
[16] Kut, C., Mac Gabhann, F. and Popel, A.S. (2007) A metaanalysis of VEGF distribution in cancer. British Journal of Cancer, 97, 978-985. doi:10.1038/sj.bjc.6603923
[17] Sung, H.K., Michael, I.P. and Nagy, A. (2010) Multifaceted role of vascular endothelial growth factor signaling in adult tissue physiology: An emerging concept with clinical implications. Current Opinion in Hematology, 17, 206-212.
[18] Carmeliet, P. and Jain, R.K. (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature, 473, 298-307. doi:10.1038/nature10144
[19] Bozena, K., Aleksandra, W. and Malgorzata, D. (2005) TGF beta signalling and its role in tumour pathogenesis. Acta biochimica Polonica, 52, 329-337.
[20] Ozaslan, M., Karagoz, I.D., Kilic, I.H. and Guldur, M.H. (2011) Ehrlich ascites carcinoma. African Journal of Biotechnology, 10, 2375-2378.
[21] Liu, X.F., Guan, Y.L., Yang, D.Z., Li, Z. and Yao, K.D. (2001) Antibacterial action of chatoyant and carboxymethylated chatoyant. Journal of Applied Polymer Science, 1, 1324-1335.
[22] Hu, F.Q., Li, Y.H., Yuan, H. and Zeng, S. (2006) Novel self-aggregates of chitosan oligosaccharide grafted stearic acid: Preparation, characterization and protein association. Pharmazie, 61, 194-198.
[23] Maclimans, W.F., Davis, E.V., Glover, F.L. and Rake, G.W. (1957) The submerged culture of mammalian cells: The spinner culture. Journal of Immunology, 79, 428-433.
[24] Gupta, M., Mazumder, U.K., Kumar, R.S. and Kumar, T.S. (2004) Antitumor activity and antioxidant role of Bauhinia racemosa against Ehrlich ascites carcinoma in Swiss albino mice. Acta Pharmacologica Sinica, 25, 1070-1076.
[25] Dacie, S.J.V. and Lewis, S.M. (1984) Practical haematology. 6th Edition, Churchill Livingstone, Edinburgh, London, 22-27.
[26] Schneider, W.C. (1945) Phosphorous compounds in animal tissues I. Extraction and estimation of deoxypentose nucleic acid and of pentose nucleic acid. Journal of Biological Chemistry, 161, 293-303.
[27] Dische, Z. and Schwarz, K. (1937) Microchemical method for the determination of different pentoses in the presence of other pentoses and hexoses, Mikrochemica Acta, 2, 13-19. doi:10.1007/BF01471868
[28] Mejbaum, W. (1939) Estimation of small amounts of pentose especially in derivatives of adenylic acid. Journal of Physiological Chemistry, 258, 117-120.
[29] Littelfield, L.W., Keller, E.B., Gross, J. and Zamecnick, P.C. (1955) Studies on cytoplasmic ribonucleoprotein particles from liver of the rat. Journal of Biological Chemistry, 217, 111-117.
[30] Knight, J.A., Anderson, S. and Rawle, J.M. (1972) Chemical basis of the sulfophosphovanillin reaction of estimateing total serum lipids. Clinical Chemistry, 18, 199-202.
[31] Reitman, A. and Frankel, S. (1957) Determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. American Journal of Clinical Pathology, 28, 56-63.
[32] Dumas, B.T., Watson, W.A. and Biggs, H.G. (1971) Albumin standard and measurment of serum albumin with bromocresol. Clinica Chimica Acta, 258, 21-30. doi:10.1016/S0009-8981(96)06447-9
[33] Beutler, E., Duron, O. and Kelly, M.B. (1963) Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61,882-888.
[34] Stocks, J. and Dormandy, T.L. (1971) The autoxidation of human red cell lipids induced by hydrogen peroxide. British Journal of Haematology, 20, 95-111. doi:10.1111/j.1365-2141.1971.tb00790.x
[35] Nishikimi, M., Roa, N.A. and Yagi, K. (1972) The occurence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications, 46, 849- 854. doi:10.1016/S0006-291X(72)80218-3
[36] Drakin, D.L. and Austin, J.H. (1932) Spectrophotometric constants for common hemoglobin derivatives in human, dog, rabbit blood Journal of Biological Chemistry, 98, 19-68.
[37] El-Aaser, A.A. and El-Merzabani, M.M. (1975) Simultaneous determination of 5’-nucleotidase and alkaline phosphatase. Zeitschrift für Klinische Chemie und Klinische Biochemie, 13, 453-459.
[38] Szasz, G., Rosenthal, P. and Fritzsche, W. (1969) Gamma glutamyl transpeptidase activity in the serum in hepatobiliary diseases. Deutsche Medizinische Wochenschrift, 94, 1911-1917. doi:10.1055/s-0028-1110364
[39] Berkels, R., Purol-Schnabel, S. and Roesen, R. (2004) Measurment of nitric oxide by reconversion of nitrate/nitrite to NO. Methods in Molecular Biology, 279, 1-8.
[40] Borchers, A.T., Stern, J.S., Hackman, R.M., Keen, C.L. and Gershwin, E.M. (1999) Mushrooms, tumors, and immunity. Proceedings of the Society for Experimental Biology and Medicine, 221, 281-293. doi:10.1046/j.1525-1373.1999.d01-86.x
[41] Park, P.-J., Je, J.-Y. and Kim, S.-K. (2004) Free radical scavenging activities of different deacetylated chitosans using an ESR spectrometer. Carbohydrate Polymers, 55, 17-22.
[42] Kathiriya, A., Das, K., Kumar, E.P. and Mathai, K.B. (2010) Evaluation of antitumor and antioxidant activity of oxalis corniculata linn. Against ehrlich ascites carcinoma on mice. Iranian Journal of Cancer Prevention, 3, 65- 157.
[43] Kalaiselvi, M., Narmadha, R., Ragavendran, P., Ravikumar, G., Gomathi, D., Sophia, D., Raj, C.A., Uma, C. and Kalaivani, K. (2011) In vivo and in vitro antitumor activeity of jasminum sambac (linn) alt oleaceae flower against daltons ascites lymphoma induced swiss albino mice. International Journal of Pharmacy and Pharmaceutical Sciences, 4, 145-147.
[44] Mazumder, U.K., Prerona, S., Haldar, P.K., Naskar, S., Kundu, S., Bala, A. and Kar, B. (2011) Anticancer activeity of methanol extract of Cucurbita maxima against Herlich ascites carcinoma. International Journal of Pharmaceutical Sciences, 2, 52-59.
[45] Fouda Fatma, M. (2005) Anti-tumor activity of tetrodotoxin extracted from the Masked Puffer fish Arothron diadematus. Journal of Biology, 7, 1-13.
[46] Deepa, P.R. and Varalakshmi, P. (2003) Protective effect of low molecular weight heparin on oxidative injury and cellular abnormalities in adriamycin-induced cardiac and hepatic toxicity. Chemico-Biological Interactions, 146, 201- 210. doi:10.1016/j.cbi.2003.08.003
[47] Fahim, F.A., Esmat, A.Y., Mady, E.A. and Ibrahim, E.K. (2003) Antitumor activities of iodo acetate and dimethylsulphoxide against solid ehrlich carcinoma growth in mice. Biological Research, 36, 253-262. doi:10.4067/S0716-97602003000200015
[48] Duh, P.D., Du, P.C. and Yen, G.C. (1999) Action of methanolic extract of mung bean hulls as inhibitors of lipid peroxidation and non-lipid oxidative damage. Food and Chemical Toxicology, 37, 1055-1061. doi:10.1016/S0278-6915(99)00096-4
[49] Crespy, V. and Williamson, G. (2004) A review of the health effects of green tea catechins in vivo animal model. Journal of Nutrition, 134, 3431-3440.
[50] Kaklamani, V.G., Hou, N., Bian, Y., Reich, J., Offit, K., Michel, L.S., Rubinstein, W.S., Rademaker, A. and Pasche, B. (2003) TGFBR1*6A and cancer risk: A meta-analysis of seven case-control studies. Journal of Clinical Oncology, 21, 3236-3243. doi:10.1200/JCO.2003.11.524
[51] Benckert, C., Jonas, S., Cramer, T., Von Marschall, Z., Schafer, G., Peters, M., Wagner, K., Radke, C., Wiedenmann, B., Neuhaus, P., Hocker, M. and Rosewicz, S. (2003) Transforming growth factor β1 stimulates vascular endothelial growth factor gene transcription in human cholangiocellular carcinoma cells. Cancer Research, 63, 1083- 1092.
[52] Suzuki, K., Tokoro, A., Okawa, Y., Suzuki, S. and Suzuki, M. (1986) Effect of N-acetylchitooligosaccharideson activation of phagocytes. Microbiology and Immunology, 30, 777-787.
[53] El-Far, M., Elshal, M., Refaat M. and El-Sherbiny, I.M. (2011) Antitumor activity and antioxidant role of a novel water-soluble carboxymethyl chitosan-based copolymer. Drug Development and Industrial Pharmacy, 37, 1481- 1490. doi:10.3109/03639045.2011.587430

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.