Techno-Economic Feasibility Analysis of Solar Photovoltaic Power Generation: A Review

Abstract

With the rapid depletion of fossil fuel reserves, it is feared that the world will soon run out of its energy resources. This is a matter of concern for developing countries whose economy heavily leans on its use of energy. Under the circums-tances it is highly desirable that renewable energy resources should be utilized with maximum conversion efficiency to cope with the ever increasing energy demand. Furthermore, the global economic and political conditions that tend to make countries more dependent on their own energy resources have caused growing interest in the development and use of renewable energy based technologies. In terms of its environmental advantages, renewable energy sources generate electricity with insignificant contribution of carbon dioxide (CO2) or other greenhouse gases (GHG) to the atmosphere and they produce no pollutant discharge on water or soil and hence power generation from renewable becomes very important. Major types of renewable energy sources include solar, wind, hydro and biomass, all of which have huge potential to meet future energy challenges. Solar photovoltaic technology in one of the first among several renewable energy technologies that have been adopted worldwide for meeting the basic needs of electricity particularly in remote areas. In this paper literature review pertaining to techno-economic feasibility analysis of solar photovoltaic power generation is discussed. The literature is basically classified into the following three main category design methods, techno-economic feasibility of solar photovoltaic power generation, performance evaluations of various systems.

Share and Cite:

M. Jamil, S. Kirmani and M. Rizwan, "Techno-Economic Feasibility Analysis of Solar Photovoltaic Power Generation: A Review," Smart Grid and Renewable Energy, Vol. 3 No. 4, 2012, pp. 266-274. doi: 10.4236/sgre.2012.34037.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. N. Singh, B. Singh and J. Ostergaard, “Renewable Energy Generation in India: Present Scenario and Future Prospects,” IEEE Power & Energy Society General Meeting, Calgary, 26-30 July 2009, pp. 1-8.
[2] S. Bogdan and M. Salameh, “Methodology for Optimally Sizing the Combination of a Battery Bank and PV Array in a Wind/PV Hybrid System,” IEEE Transactions on Energy Conversion, Vol. 11, No. 2, 1996, pp. 367-375. doi:10.1109/60.507648
[3] W. D. Kellogg, M. H. Nehrir, G. Venkataramanan and V. Gerez, “Generation Unit Sizing and Cost Analysis for Stand-Alone Wind, Photovoltaic, and Hybrid Wind/PV System,” IEEE Transactions on Energy Conversion, Vol. 13, No. 1, 1998, pp. 70-76. doi:10.1109/60.658206
[4] A. N. Celik, “Techno-Economic Analysis of Autonomous PV-Wind Hybrid Energy Systems Using Different Sizing Methods,” Energy Conversion and Management, Vol. 44, No. 12, 2003, pp. 1951-1968. doi:10.1016/S0196-8904(02)00223-6
[5] M. M. Mahmoud and I. H. Ibrik, “Field Experience on Solar Electric Power Systems and Their Potential in Palestine,” Renewable and Sustainable Energy Reviews, Vol. 7, No. 6, 2003, pp. 531-543. doi:10.1016/S1364-0321(03)00070-4
[6] G. Bekele and B. Palm, “Feasibility Study for a Standalone Solar-Wind-Based Hybrid Energy System for Application in Ethiopia,” Applied Energy, Vol. 87, No. 2, 2010, pp. 487-495. doi:10.1016/j.apenergy.2009.06.006
[7] P. Arun, R. Banerjee and S. Bandyopadhyay, “Sizing Curve for Design of Isolated Power Systems,” Energy for Sustainable Development, Vol. 11, No. 4, 2007, pp. 21-28. doi:10.1016/S0973-0826(08)60406-8
[8] P. Arun, R. Banerjee and S. Bandyopadhyay, “Optimum Sizing of Photovoltaic Battery Systems Incorporating Uncertainty through Design Space Approach,” Solar Energy, Vol. 83, No. 7, 2009, pp. 1013-1025. doi:10.1016/j.solener.2009.01.003
[9] E. S. Hrayshat, “Techno-Economic Analysis of Autonomous Hybrid Photovoltaic-Diesel-Battery System,” Energy for Sustainable Development, Vol. 13, No. 3, 2009, pp. 143-150. doi:10.1016/j.esd.2009.07.003
[10] A. Chaurey and T. C. Kandpal, “A Techno-Economic Comparison of Rural Electrification Based on Solar Home Systems and PV Microgrids,” Energy Policy, Vol. 38, No. 6, 2010, pp. 3118-3129. doi:10.1016/j.enpol.2010.01.052
[11] M. Uzunoglu, O. C. Onar and M.S. Alam, “Modelling, Control and Simulation of a PV/FC/UC Based Hybrid Power Generation System for Stand-Alone Applications,” Renewable Energy, Vol. 34, No. 3, 2009, pp. 509-520. doi:10.1016/j.renene.2008.06.009
[12] A. Mellit, S. A. Kalogirou, L. Hontoria and S. Shaari, “Artificial Intelligence Techniques for Sizing Photovoltaic Systems: A Review,” Renewable and Sustainable Energy Reviews, Vol. 13, No. 2, 2009, pp. 406-419. doi:10.1016/j.rser.2008.01.006
[13] M. R. Borges Neto, P. C. M. Carvalho, J. O. B. Carioca and J. F. Canaf?stula, “Biogas/Photovoltaic Hybrid Power System for Decentralized Energy Supply of Rural Areas,” Energy Policy, Vol. 38, No. 8, 2010, pp. 4497-4506. doi:10.1016/j.enpol.2010.04.004
[14] B. K. Bala and S. A. Siddique, “Optimal Design of a PV-Diesel Hybrid System for Electrification of an Isolated Island Sandwitch in Bangladesh Using Genetic Al gorithm,” Energy for Sustainable Development, Vol. 13, No. 3, 2009, pp. 137-142. doi:10.1016/j.esd.2009.07.002
[15] M. Sidrach-de-Cardona and L. M. Lopez, “Evaluation of a Grid-Connected Photovoltaic System in Southern Spain,” Renewable Energy, Vol. 15, No. 1-4, 1998, pp. 527-530. doi:10.1016/S0960-1481(98)00218-3
[16] A. Schmitt, G. Huard and G. Kwiatkowsk, “PV-Hybrid Microplants and Mini-Grids for Decentralised Rural Electrification in Developing Countries,” EDF Research and development, France, 2006.
[17] N. Kaushika, N. K. Gautam and K. Kaushik, “Simulation Model for Sizing of Standalone Solar PV System with Interconnected Array,” Solar Energy Materials and Solar Cells, Vol. 85, No. 4, 2005, pp. 499-519. doi:10.1016/j.solmat.2004.05.024
[18] A. Lietzmann, D. Frohler and K. Lietzmann, “Practical Experiences and Dimensioning in the Operation of Decentralized Energy Supply Stations, at RIO 5-World Climate & Energy Event,” Proceedings of the International Conference, Rio de Janeiro, 2005.
[19] T. E. Drennen, J. D. Erickson and D. Chapman, “Solar Power and Climate Change Policy in developing Countries,” Energy Policy, Vol. 24, No. 1, 1996, pp. 9-16. doi:10.1016/0301-4215(95)00117-4
[20] G. C. Bakosa and M. Soursosb, “Techno-Economic Assessment of a Stand-Alone PV/hybrid Installation for Low-Cost Electrification of a Tourist Resort in Greece,” Applied Energy, Vol. 73, No. 2, 2002, pp. 183-193. doi:10.1016/S0306-2619(02)00062-4
[21] J. L. Bernal-Agustin and R. Dufo-Lopez, “Economical and Environmental Analysis of Grid Connected Photovoltaic Systems in Spain,” Renewable Energy, Vol. 31, No. 8, 2006, pp. 1107-1128. doi:10.1016/j.renene.2005.06.004
[22] S. M. Shaahid and E. I. Amin, “Techno-Economic Evaluation of Off-Grid Hybrid Photovoltaic-Diesel Battery Power Systems for Rural Electrification in Saudi Arabia—A Way Forward for Sustainable Development,” Renewable and Sustainable Energy Reviews, Vol. 13, No. 3, 2009, pp. 625-633. doi:10.1016/j.rser.2007.11.017
[23] M. Kolhe, S. Kolhea and J. C. Joshi, “Economic Viability of Stand-Alone Solar Photovoltaic System in Comparison with Diesel-Powered System for India,” Energy Economics, Vol. 24, No. 2, 2002, pp. 155-165. doi:10.1016/S0140-9883(01)00095-0
[24] M. M. Mahmoud and I. H. Ibrik, “Techno-Economic Feasibility of Energy Supply of Remote Villages in Palestine by PV-Systems, Diesel Generators and Electric Grid,” Renewable and Sustainable Energy Reviews, Vol. 10, No. 2, 2006, pp. 128-138. doi:10.1016/j.rser.2004.09.001
[25] D. B. Nelson, M. H. Nehrir and C. Wang, “Unit Sizing and Cost Analysis of Stand-Alone Hybrid Wind/PV/Fuel Cell Power Generation Systems,” Renewable Energy, Vol. 31, No. 10, 2006, pp. 1641-1656. doi:10.1016/j.renene.2005.08.031
[26] R. Kannan, K. C. Leong and R. Osman, “Life Cycle Assessment Study of Solar PV Systems: An Example of a 2.7 kWp Distributed Solar PV System in Singapore,” Solar Energy, Vol. 80, No. 5, 2006, pp. 555-563. doi:10.1016/j.solener.2005.04.008
[27] A. Stoppato, “Life Cycle Assessment of Photovoltaic Electricity Generation,” Energy, Vol. 33, No. 2, 2008, pp. 224-232. doi:10.1016/j.energy.2007.11.012
[28] M. Raugei and P. Frankl, “Life Cycle Impacts and Costs of Photovoltaic Systems: Current State of the Art and Future Outlooks,” Energy, Vol. 34, No. 3, 2009, pp. 392399. doi:10.1016/j.energy.2009.01.001
[29] M. Kolhe, “Techno-Economic Optimum Sizing of a Stand-Alone Solar Photovoltaic System,” IEEE Transaction on Energy Conversion, Vol. 24, No. 2, 2009, pp. 511-519. doi:10.1109/TEC.2008.2001455
[30] M. EL-Shimy, “Viability Analysis of PV Power Plants in Egypt,” Renewable Energy, Vol. 34, No. 10, 2009, pp. 2187-2196. doi:10.1016/j.renene.2009.01.010
[31] S. S. Dihrab and K. Sopin, “Electricity Generation of Hybrid PV/Wind Systems in Iraq,” Renewable Energy, Vol. 35, No. 6, 2010, pp. 1303-1307. doi:10.1016/j.renene.2009.12.010
[32] N. E. Mbaka, N. J. Mucho and K. Godpromesse, “Economic Evaluation of Small-Scale Photovoltaic Hybrid Systems for Mini-Grid Applications in Far North Cameroon,” Renewable Energy, Vol. 35, No. 10, 2010, pp. 2391-2398. doi:10.1016/j.renene.2010.03.005
[33] S. Rehman and L. M. Al-Hadhrami, “Study of a Solar PV/Diesel/Battery Hybrid Power System for a Remotely Located Population near Rafha, Saudi Arabia,” Energy, Vol. 35, No. 12, 2010, pp. 4986-4995.
[34] G. C. Bakos and N. F. Tsagas, “Technoeconomic Assessment of a Hybrid Solar/Wind Installation for Electrical Energy Saving,” Energy and Buildings, Vol. 35, No. 2, 2003, pp.139-145. doi:10.1016/S0378-7788(02)00023-3
[35] S. Chakrabarti and S. Chakrabarti, “Rural Electrification Programme with Solar Energy in Remote Region—A Case Study in an Island,” Energy Policy, Vol. 30, No. 1, 2002, pp. 33-42. doi:10.1016/S0301-4215(01)00057-X
[36] A. H. M. E. Reinders, Pramusito, A. Sudradjat, V. A. P. van Dijk, R. Mulyadi and W. C. Turkenburg, “Sukatani Revisited: On the Performance of Nine-Year-Old Solar Home Systems and Street Lighting Systems in Indonesia,” Renewable and Sustainable Energy Reviews, Vol. 3, No. 1, 1999, pp. 1-47. doi:10.1016/S1364-0321(99)00004-0
[37] C. Greacen and D. Green, “The Role of Bypass Diodes in the Failure of Solar Battery Charging Stations in Thailand,” Solar Energy Materials and Solar Cells, Vol. 70, No. 2, 2001, pp. 141-149. doi:10.1016/S0927-0248(01)00017-4
[38] F. Giraud and Z. M. Salameh, “Steady-State Performance of a Grid-Connected Rooftop Hybrid Wind-Photovoltaic Power System with Battery Storage,” IEEE Transactions on Energy Conversion, Vol. 16, No. 1, 2001, pp. 1-7. doi:10.1109/60.911395
[39] I. Ashraf and A. Chandra, “Techno Economic Viability of a Rooftop Hybridized Solar PV-AC Grid Assisted Power System for Peak Load Management,” 2nd International Conference on Power Electronics Machines and Drives, Vol. 1, 2004, pp. 442-446.
[40] C. Wang and M. H. Nehrir, “Power Management of a Stand-Alone Wind/Photovoltaic/Fuel Cell Energy System,” IEEE Transaction on Energy Conversion, Vol. 23, No. 3, 2008, pp. 957-967. doi:10.1109/TEC.2007.914200
[41] D. K. Khatod, V. Pant and J. Sharma, “Analytical Approach for Well-Being Assessment of Small Autonomous Power Systems with Solar and Wind Energy Sources,” IEEE Transaction on Energy Conversion, Vol. 25, No. 2, 2010, pp. 535-545. doi:10.1109/TEC.2009.2033881
[42] I. Ashraf, A. Chandra and M. S. Sodha, “Techno-Economic and Environmental Analysis for Grid Interactive Solar Photovoltaic Power System of Lakshadweep Islands,” International Journal of Engineering Research, Vol. 28, 2008, pp. 1033-1042.
[43] K. Y. Lau, M. F. M. Yousof, S. N. M. Arshad, M. Anwari and H. M. Yatim, “Performance Analysis of Hybrid Photovoltaic/Diesel Energy System under Malaysian Conditions,” Energy, Vol. 35, No. 8, 2010, pp. 3245-3255. doi:10.1016/j.energy.2010.04.008
[44] A. Chaurey and T. C. Kandpal, “Assessment and Evaluation of PV Based Decentralized Rural Electrification: An Overview,” Renewable and Sustainable Energy Reviews, Vol. 14, No. 8, 2010, pp. 2266-2278. doi:10.1016/j.rser.2010.04.005
[45] G. C. Bakos, “Distributed Power Generation: A Case Study of Small Scale PV Power Plant in Greece,” Applied Energy, Vol. 86, No. 9, 2009, pp. 1757-1766. doi:10.1016/j.apenergy.2008.12.021
[46] D. P. Kaundinya, P. Balachandra and N. H. Ravindranath, “Grid-Connected versus Stand-Alone Energy Systems for Decentralized Power—A Review of Literature,” Renewable and Sustainable Energy Reviews, Vol. 13, No. 8, 2009, pp. 2041-2050. doi:10.1016/j.rser.2009.02.002

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.