Environmentally Benign Synthetic Protocol for O-Alkylation of β-Naphthols and Hydroxy Pyridines in Aqueous Micellar Media

Abstract

Ultrasonic and microwave-assisted practical methods have been developed for the O-alkylation of aryl (β-naphthols) and Heteroaryl (hydroxy pyridines) in aqueous surfactant media in good to excellent yields. The developed methods are simple, efficient, economical and environmentally safe. Our novel methods describe a set of green methods to Wil-liamson synthesis.

Share and Cite:

K. Reddy, K. Rajanna, S. Ramgopal, M. Kumar and S. Sana, "Environmentally Benign Synthetic Protocol for O-Alkylation of β-Naphthols and Hydroxy Pyridines in Aqueous Micellar Media," Green and Sustainable Chemistry, Vol. 2 No. 4, 2012, pp. 123-132. doi: 10.4236/gsc.2012.24018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. H. Miles and K. B. Connell, “Synthesis of Methyl Diantilis, a Commercially Important Fragrance,” Journal of Chemical Education, Vol. 83, No. 2, 2006, p. 285. doi:10.1021/ed083p285
[2] M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi and C. D. Pina, “From Glycerol to Value-Added Products,” Angewandte Chemie International Edition, Vol. 46, No. 24, 2007, pp. 4434-4440. doi:10.1002/chin.200737271
[3] N. Baggett, “Comprehensive Organic Chemistry,” In: D. Barton, W. D. Ollis and J. F. Stoddart, Eds., Comprehensive Organic Chemistry, 1 Editon, Pergaman, Oxford, 1979, p. 819.
[4] J. March, “Advanced Organic Chemistry, Reactions, Mechanism and Structure,” 4th Edition, Wiley, New York, 1992, p. 386.
[5] S. Kim, K. N. Chung and S. Yang, “Direct Synthesis of Ethers via Zinc Chloride-Mediated Etherification of Alcohols in Dichloroethane,” The Journal of Organic Chemistry, Vol. 52, No. 17, 1987, pp. 3917-3919. doi:10.1021/jo00226a036
[6] L. Karas and W. J. Piel, “Kirk-Othmer Encyclopedia of Chemical Technology,” 4th Edition, Wiley, New York, 1992, p. 860
[7] P. Salehi, N. Iranpoor and F. K. Behbahani, “Selective and Efficient Alcoholyses of Allylic, Secondaryand Tertiary Benzylic Alcohols in the Presence of Iron (III),” Tetrahedron, Vol. 54, No. 5-6, 1998, pp. 943-948. doi:10.1016/S0040-4020(97)10350-7
[8] G. V. M. Sharma and A. K. Mahalingam,” A Facile Conversion of Alcohols into p-Methoxybenzyl Ethers (PMBEthers) Using p-Methoxybenzyl Alcohol-Yb(OTf)3,” The Journal of Organic Chemistry, Vol. 64, No. 24, 1999, pp. 8943-8944. doi:10.1021/jo990563x
[9] K. J. Miller and M. M. Abu-Omar, “Palladium-Catalyzed SN1 Reactions of Secondary Benzylic Alcohols: Etherification, Amination, and Thioetherification,” European Journal of Organic Chemistry, Vol. 2003, No. 7, pp. 12941299. doi:10.1002/ejoc.200390185
[10] C. Siswanto, T. Battal, O. E. Schuss and J. F. Rathman, “Synthesis of Alkylphenyl Ethers in Aqueous Surfactant Solutions by Micellar Phase-Transfer Catalysis. 1. Single-Phase Systems,” Langmuir, Vol. 13, No. 23, 1997, pp. 6047-6052. doi:10.1021/la960487i
[11] F. Li, Q. R. Wang, Z. B. Ding and F. G. Tao,” Microwave-Assisted Synthesis of Diaryl Ethers without Catalyst,” Organic Letters, Vol. 5, No. 12, 2003, pp. 21692171. doi:10.1021/ol0346436
[12] H. Firouzabadi, N. Iranpoor and A. A. Jafari, “Facile Preparation of Symmetrical and Unsymmetrical Ethers From Their Corresponding Alcohols Catalyzed by Aluminumdodecatangstophosphate (AlPW12O40), as a Versatile and a Highly Water Tolerant Lewis Acid,” Journal of Molecular Catalysis A: Chemical, Vol. 227, No. 1-2, 2005, pp. 97-100. doi:10.1016/j.molcata.2004.09.078
[13] A. Corma and M. Renz, “A General Method for the Preparation of Ethers Using Water-Resistant Solid Lewis Acids,” Angewandte Chemie International Edition, Vol. 46, 1-2, 2007, pp. 298-300. doi:10.1002/anie.200604018
[14] K. T. V. Rao, P. S. N. Rao, P. S. Saiprasad and N. Lingaiah, “Cesium Exchanged Heteropoly Tungstate Supported on Zirconia as an Efficient and Selective Catalyst for the Preparation of Unsymmetrical Ethers,” Catalysis Communications, Vol. 10, No. 10, 2009, pp. 1394-1397. doi:10.1016/j.catcom.2009.03.004
[15] J. Pozniczek, A. Micek-llnicka, A. Lubanska and A. Bielanski, “Catalytic Synthesis of Ethyl-Tert-Butyl Ether on Dawson Type Heteropolyacid,” Applied Catalysis A: General, Vol. 286, No. 1, 2005, pp. 52-60. doi:10.1016/j.apcata.2005.02.035
[16] T. Ollevier and T. M. Mwene-Mbeja, “Bismuth Triflate Catalyzed Claisen Rearrangement of Allyl Naphthyl Ethers,” Tetrahedron Letters, Vol. 47, No. 24, 2006, pp. 4051-4055. doi:10.1016/j.tetlet.2006.03.193
[17] Y. Q. Cao and B. G. Pei, “Etherification of Phenols Catalysed by Solid-Liquid Phase Transfer Catalyst PEG 400 without Solvent,” Synthetic Communications, Vol. 30, No. 10, 2000, pp. 1759-1766. doi:10.1080/00397910008087221
[18] T. Mitsudome, T. Matsuno, S. Sueoka, T. Mizugaki, K. Jitsukawa and K. Kaneda; “Direct Synthesis of Unsymmetrical Ethers from Alcohols Catalyzed by Titanium Cation-Exchanged Montmorillonite,” Green Chemistry, Vol. 14, No. 3, 2012, pp. 610-613. doi:10.1039/c2gc16135d
[19] T. Ashok Rao, D. Dutta and G. I. Georg, “Polymer-Bound Triphenylphosphine as Traceless Reagent for Mitsunobu Reactions in Combinatorial Chemistry: Synthesis of Aryl Ethers from Phenols and Alcohols,” Tetrahedron Letters, Vol. 39, No. 48, 1998, pp. 8751-8754. doi:10.1016/S0040-4039(98)01988-1
[20] K. C. Kumara Swamy, N. N. Bhuvan Kumar, E. Balaraman and K. V. P. P. Kumar, “Mitsunobu and Related Eactions: Advances and Applications,” Chemical Reviews, Vol. 109, No. 6, 2009, pp. 2551-2651. doi:10.1021/ cr800278z
[21] M. Debabrata and S. L. Buchwald, “Cu-Catalyzed Arylation of Phenols: Synthesis of Sterically Hindered and Heteroaryl Diaryl Ethers,” The Journal of Organic Chemistry, Vol. 75, No. 5, 2010, pp. 1791-1794. doi:10.1021/jo9026935
[22] M. D. Maiti, “Chemoselectivity in the Cu-catalyzed O-Arylation of Phenols and Aliphatic Alcohols,” Chemical Communications, Vol. 47, No. 29, 2011, pp. 83408342. doi:10.1039/c1cc12694f
[23] P. A. Grieco, “Organic Synthesis in Water,” Blacky Academic and Professional, London, 1998. doi:10.1007/978-94-011-4950-1
[24] C. J. Li and T. H. Chan, “Organic Reactions in Aqueous Media,” John Wiley and Sons, New York, 1997.
[25] J. H. Fendler and E. J. Fendler, “Catalysis in Micellar and Macromolecular Systems,” Academic Press, London, 1975.
[26] D. A. Sabatini, R. C. Knox and J. H. Harwell, “Surfactant-Enhanced Subsurface Remediation,” American Chemical Society, Washington DC, 1994.
[27] F. M. Menger, J. U. Rhee and H. K. Rhee, “Applications of Surfactants to Synthetic Organic Chemistry,” The Journal of Organic Chemistry, Vol. 40, 25, 1975, pp. 3803-3805. doi:10.1021/jo00913a051
[28] P. T. Anastas and J. C. Warner, “Green Chemistry: Theory and Practice,” Oxford University Press, New York, 1998.
[29] T. J. Mason, “Chemistry with Ultrasound,” Elsevier Science Publishers Ltd., England, 1990.
[30] A. Kottror-earou and M. R. Hoffman, “Ultrasonic Irradiation of p-Nitrophenol in Aqueous Solution,” The Journal of Physical Chemistry, Vol. 95, No. 9, 1991, pp. 36303638. doi:10.1021/j100162a037
[31] K. S. Suslick, “Ultrasound, Its Chemical, Physical and Biological Effects,” VCH Publishers, Inc., Deerfield Beach, 1988.
[32] M. A. Margulis, “Advances in Sonochemistry,” In: T. J. Mason, Ed., Advances in Sonochemistry 1 Edition, Greenwich Connection, London, 1990, p. 49.
[33] T. J. Mason, “Ultrasound in Synthetic Organic Chemistry,” Chemical Society Reviews, Vol. 26, No. 6, 1997, pp. 443-451. doi:10.1039/cs9972600443
[34] G. Cravotto and P Cintas, “Power Ultrasound in Organic Synthesis: Moving Cavitational Chemistry from Academia to Innovative and Large-Scale Applications,” Chemical Society Reviews, Vol. 35, No. 2, 2006, pp. 180-196. doi:10.1039/b503848k
[35] H. Fillion and J. L. Luche, “Ch.9: Selected Experiments,” In: J. L. Luche, Ed., Synthetic Organic Sonochemistry, Plenum, New York, 1998 and References Therein.
[36] P. Lidstr?m, J. Tierney, B. Wathey and J. Westman, “Microwave Assisted Organic Synthesis—A Review,” Tetrahedron, Vol. 57, No. 45, 2001, pp. 9225-9283. doi.org/10.1016/S0040-4020(01)00906-1
[37] C. Oliver Kappe, “Controlled Microwave Heating in Modern Organic Synthesi,” Angewandte Chemie International Edition, Vol. 43, No. 46, 2004, pp. 6250-6284. doi:10.1002/anie.20040065
[38] C. R. Strauss and R. W. Trainor, “Developments in Microwave-Assisted Organic Chemistry,” Australian Journal of Chemistry, Vol. 48, No. 10, 1995, pp. 1665-1692. doi:10.1071/CH9951665
[39] A. Manvar, P. Bochiya, V. Virsodia, R. Khunt and A. Shah, “Microwave-Assisted and Zn[l-Proline]2 Catalyzed Tandem Cyclization under Solvent Free Conditions: Rapid Synthesis of Chromeno[4,3-C]Pyrazol-4-Ones,” Journal of Molecular Catalysis A: Chemical, Vol. 275, No. 1-2, 2007, pp. 148-152. doi:10.1016/j.molcata.2007.05.039
[40] A. Sharma, P. Appukkuttan and E. Van der Eycken, “Microwave-Assisted Synthesis of Medium-Sized Heterocycles,” Chemical Communications, Vol. 48, 11, 2012, pp. 1623-1637. doi:10.1039/c1cc15238f
[41] L.-M. Wang, N. Jiao, J. Qiu, J.-J. Yu, J.-Q. Liu, F.-L. Guo and Y. Liu, “Sodium Stearate-Catalyzed Multicomponent Reactions for Efficient Synthesis of Spirooxindoles in Aqueous Micellar Media,” Tetrahedron, Vol. 66, No. 1, 2010, pp. 339-343. doi:10.1016/j.tet.2009.10.091
[42] Y. Watanabe, K. Sawada and M. Hayashi, “A Green Method for the Self-Aldol Condensation of Aldehydes Using Lysin,” Green Chemistry, Vol. 12, No. 3, 2010, pp. 384-386. doi:10.1039/b918349c
[43] H. Firouzabadi, N. Iranpoor and A. Garzan, “Highly Efficient Halogenation of Organic Compounds with Halides Catalyzed by Cerium(III) Chloride Heptahydrate Using Hydrogen Peroxide as the Terminal Oxidant in Water,” Advanced Synthesis & Catalysis, Vol. 347, No. 11-12, 2005, pp. 1925-1928. doi:10.1002/adsc.200900124

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.