Parabrachial neuron development: Effects of pre- and neonatal undernutrition in the rat

Abstract

Pre-and neonatal fasting in the rat has been used as an experimental model to obtain information on how the newborn gustatory system can be damaged, in- terfering with the basic sensory and hedonic proc- esses to different tastants. Fasting during the prenatal period and for 24 days postnatally results in signifi- cant reductions of body and brain weight, number of branches, dendritic density, and cross-sectional area of the PBN multipolar neurons in the central lateral and central medial subnucleus particularly at post- natal days 20 and 30. Furthermore, the underfeeding paradigm affected more the middle portions of the dendritic tree than other parts of the neurons possibly disturbing the afferent characteristics of neuronal acti- vity propagation that may partly disrupt the elabora- tion of synaptic plasticity at later ages. These findings may play a role in the development of complex physio- logical phenomena such as food intake, taste discrimi- nation, learning taste aversion, and appetitive beha- vior.

Share and Cite:

Torrero, C. , Regalado, M. , Rubio, L. and Salas, M. (2012) Parabrachial neuron development: Effects of pre- and neonatal undernutrition in the rat. Open Journal of Molecular and Integrative Physiology, 2, 112-118. doi: 10.4236/ojmip.2012.24016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Hermann, G.E. and Rogers, R.C. (1985) Convergence of vagal and gustatory afferent input within the parabrachial nucleus of the rat. Journal of the Autonomic Nervous System, 13, 1-7. doi:10.1016/0165-1838(85)90002-5
[2] Kobashi, M. and Adachi, A. (1986) Projection of nucleus tractus solitarius units influenced by hepatoportal afferent signal to parabrachial nucleus. Journal of the Autonomic Nervous System, 16, 153-158.
[3] Moga, M.M., Herbert, H., Hurley, K.M., et al. (1990) Organization of cortical, basal forebrain, and hypothalamic afferents to the parabrachial nucleus in the rat. Journal of Comparative Neurology, 295, 624-661. doi:10.1002/cne.902950408
[4] Hanamori, T. and Ishiko, N. (1993) Cardiovascular responses to gustatory and mechanical stimulation of the nasopharynx in rats. Brain Research, 619, 214-222. doi:10.1016/0006-8993(93)91614-X
[5] Yamamoto, T., Shimura, T., Sakai, N., et al. (1994) Representation of hedonics and quality of taste stimuli in the parabrachial nucleus of the rat. Physiology and Behavior, 56, 1197-1202. doi:10.1016/0031-9384(94)90366-2
[6] Mizusawa, A., Ogawa, H., Kikuchi, Y., et al. (1995) Role of the parabrachial nucleus in ventilatory responses of awake rats. Journal of Physiology, 489, 877-884.
[7] Shimura, T., Tokita, K. and Yamamoto, T. (2002) Parabrachial unit activities after the acquisition of conditioned taste aversion to a non-preferred HCL solution in rats. Chemical Senses, 27, 153-158. doi:10.1093/chemse/27.2.153
[8] Sewards, T.V. (2004) Dual separate pathways for sensory and hedonic aspects of taste. Brain Research Bulletin, 62, 271-283.
[9] Haino, T., Hironaka, S., Ooka, T., et al. (2010) Orosensory deprivation alters taste-elicited c-Fos expression in the parabrachial nucleus of neonatal rats. Neuroscience Research, 67, 228-235. doi:10.1016/j.neures.2010.03.007
[10] Coizet, V., Dommett, E.J., Klop, E.M., et al. (2010) The parabrachial nucleus is a critical link in the transmission of short latency nociceptive information to midbrain dopaminergic neurons. Neuroscience, 168, 263-272. doi:10.1016/j.neuroscience.2010.03.049
[11] Callison, D.A. and Spencer, J.W. (1968) Effect of chronic undernutrition and/or visual deprivation upon the visual evoked potential from the developing rat brain. Developmental Psychobiology, 1, 196-204. doi:10.1002/dev.420010308
[12] Salas, M. and Cintra, L. (1973) Nutritional influences upon somatosensory evoked responses during development in the rat. Physiology and Behavior, 10, 1019-1022. doi:10.1016/0031-9384(73)90182-0
[13] Math, F. and Davrainville, J.L. (1980) Eletrophysiological study of the postnatal development of mitral cell activity in the rat olfactory bulb. Influence of undernutrition. Brain Research, 194, 223-227. doi:10.1016/0006-8993(80)91333-5
[14] Salas, M., Torrero, C., Regalado, M., et al. (1994) Dendritic arbor alterations in the medial superior olivary neurons of neonatally underfed rats. Acta Anatomica, 151, 180-187. doi:10.1159/000147661
[15] Frias, C., Torrero, C., Regalado, M., et al. (2009) Development of mitral cells and olfactory bulb layers in neonatally undernourished rats. Nutritional Neuroscience, 12, 96-104. doi:10.1179/147683009X423238
[16] Cragg, B.G. (1972) The development of cortical synapses during starvation in the rat. Brain, 95, 143-150. doi:10.1093/brain/95.1.143
[17] Salas, M., Diaz, S. and Nieto, A. (1974) Effects of neonatal food deprivation on cortical spines and dendritic development of the rat. Brain Research, 73, 139-144. doi:10.1016/0006-8993(74)91012-9
[18] McConell, P. and Berry, M. (1978) The effect of refeeding after neonatal starvation on Purkinje cell dendritic growth in the rat. Journal of Comparative Neurology, 178, 759-772. doi:10.1002/cne.901780410
[19] Escobar, C. and Salas, M. (1993) Neonatal undernutrition and amygdaloid nuclear complex development: An experimental study in the rat. Experimental Neurology, 122, 311-318. doi:10.1006/exnr.1993.1130
[20] Andrade, J.P., Castanheira-Vale, A.J., Paz-Dias, P.G., et al. (1996) The dendritic trees of neurons from the hippocampal formation of protein-deprived adult rats. A quantitative Golgi study. Experimental Brain Research, 109, 419-433. doi:10.1007/BF00229626
[21] Rubio, L., Torrero, C., Regalado, M., et al. (2004) Alterations in the solitary tract nucleus of the rat following perinatal food restriction and subsequent nutritional rehabilitation. Nutritional Neuroscience, 7, 291-300. doi:10.1080/10284150400019922
[22] Salas, M., Torrero, C., Rubio, L., et al. (2012) Effects of perinatal undernutrition on the development of neurons in the insular cortex. Nutritional Neuroscience, 15, 20-25. doi:10.1179/1476830512Y.0000000014
[23] Vanderbergh, J.G. (2003) Prenatal exposure and sexual variation. American Scientist, 91, 218-225. doi:10.1511/2003.3.218
[24] Altman, J. and Bayer S.A. (1995) Atlas of prenatal rat brain development. CRC Press, Boca Raton.
[25] Lynch, A. (1976) Postnatal undernutrition: An alternative method. Developmental Psychobiology, 9, 39-48. doi:10.1002/dev.420090107
[26] Salas, M., Torrero, C. and Pulido, S. (1984) Long-term alterations in the maternal behavior of neonatally undernourished rats. Physiology and Behavior, 33, 273-278. doi:10.1016/0031-9384(84)90111-2
[27] Paxinos, G. and Watson, C. (1986) The rat brain in stereotaxic coordinates. Academic Press Inc., San Diego.
[28] Sholl, D.A. (1956) The organization of the cerebral cortex. Halfner, New York.
[29] Spinelli, D.N., Jensen, F.E. and Di Prisco, G.V. (1980) Early experience effect on dendritic branching in normally reared kittens. Experimental Neurology, 68, 1-11. doi:10.1016/0014-4886(80)90063-1
[30] Soriano, O., Regalado, M., Torrero, C., et al. (2006) Contributions of undernutrition and handling to huddling development of rats. Physiology and Behavior, 89, 543-551.
[31] Frias, C., Torrero, C., Regalado, M., et al. (2006) Organization of olfactory glomeruli in neonatally undernourished rats. Nutritional Neuroscience, 9, 49-55. doi:10.1080/10284150500506042
[32] Magee, J.C. and Cook, E.P. (2000) Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neuroscience, 3, 895-903. doi:10.1038/78800
[33] Williams, S.R. and Stuart, G.J. (2000) Back propagation of physiological spike trains in neocortical pyramidal neurons: Implications for temporal coding in dendrites. Journal of Neuroscience, 20, 8238-8246.
[34] Peci?a, S., Smith, K.S. and Berridge, K.C. (2006) Hedonic hot spots in the brain. The Neuroscientist, 12, 500511. doi:10.1177/1073858406293154
[35] Escobar, C. and Salas, M. (1995) Dendritic branching of claustral neurons in neonatally undernourished rats. Biology of the Neonate, 68, 47-54. doi:10.1159/000244217
[36] Saggu, S. and Lundy, R. (2008) Forebrain neurons that project to the gustatory parabrachial nucleus in rat lack glutamic acid decarboxylase. American Journal of Physiology Regulatory Integrative Comparative Physiology, 294, R52-R57. doi:10.1152/ajpregu.00635.2007
[37] De la Torre, M.L. and Agüero, A. (2008) The role of the dorsal-most part of the lateral parabrachial nucleus in the processing of hypertonic NaCl using different conditioned flavor avoidance paradigms. Experimental Brain Research, 186, 481-491. doi:10.1007/s00221-007-1250-3
[38] Hajnal, A., Norgren, R. and Kovacs, P. (2009) Parabrachial coding of sapid sucrose: relevance to reward and obesity. Annals of the New York Academy of Science, 1170, 347364. doi:10.1111/j.1749-6632.2009.03930.x
[39] Froemke, R.C., Letzkus, J.J., Kampa, B.M., et al. (2010) Dendritic synapse location and neocortical spike-timingdependent plasticity. Frontiers in Synaptic Neuroscience, 2, 1-14. doi:10.3389/fnsyn.2010.00029
[40] Hill, D.L. and Almli, C.R. (1983) Parabrachial nuclei damage in infant rats produces residual deficits in gustatory preferences/aversions and sodium appetite. Developmental Psychobiology, 16, 519-533.
[41] Yamamoto T. (1993) Neural mechanisms of taste aversion learning. Neuroscience Research, 16, 181-185. doi:10.1016/0168-0102(93)90122-7
[42] Dayawansa, S., Peckins, S., Ruch, S. et al. (2011) Parabrachial and hypothalamic interaction in sodium appetite. American Journal Regulatory Integrative Comparative Physiology, 300, R1091-R1099. doi:10.1152/ajpregu.00615.2010
[43] Bhide, P.G. and Bedi, K.S. (1984) The effects of environmental diversity on well fed and previously undernourished rats: Neuronal and glial cell measurements in the visual cortex (area 17). Journal of Anatomy, 138, 447461.
[44] Castelucci, P., Souza, R.R., Angelis, R.C., et al. (2002) Effects of pre-and postnatal protein deprivation and postnatal refeeding on myenteric neurons of the rat large intestine: A quantitative morphological study. Cell Tissue Research, 310, 1-7. doi:10.1007/s00441-002-0615-y
[45] Torrero, C., Regalado, M., Perez, E., et al. (2005) Neonatal food restriction and binaural ear occlusion interfere with the maturation of cortical motor pyramids in the rat. Nutritional Neuroscience, 8, 63-66. doi:10.1080/10284150400027131
[46] Altavista, M.C., Rossi, P., Bentivoglio, A.R., et al. (1990) Aging is associated with a diffuse impairment of forebrain cholinergic neurons, Brain Research, 508, 51-59. doi:10.1016/0006-8993(90)91116-X
[47] Reddy, T.S. and Horrocks L.A. (1986) Effects of neonatal undernutrition of rats on the synthesis of phosphatidylcholine and phosphatidylethanolamine by microsomes from gray matter and white matter. International Journal of Developmental Neuroscience, 4, 89-95. doi:10.1016/0736-5748(86)90020-1
[48] Hamori, J. (1990) Morphological plasticity of postsynaptic neurones in reactive synaptogenesis. Journal of Experimental Biology, 153, 251-260.
[49] Watanabe, Y., Gould, E. and McEwen, B.S. (1992) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Research, 588, 341-345. doi:10.1016/0006-8993(92)91597-8
[50] Sakai, N. and Yamamoto, T. (1998) Role of the medial and lateral parabrachial nucleus in acquisition and retention of conditioned taste aversion in rats. Behavioural Brain Research, 93, 63-70.
[51] Sim?es, L.S., Boldrini, S.C., Binotti, C.B., et al. (2009) Impact of pre and postnatal protein energy deprivation on structure of the trigeminal ganglion of weanling rats. The Open Nutrition Journal, 3, 1-4. doi:10.2174/1874288200903010001
[52] Gomes, P.S., Nyengaard, J.R., Misawa, R., et al. (2009) Atrophy and neuron loss: effects of a protein-deficient diet on sympathetic neurons. Journal of Neuroscience Research, 87, 3568-3575. doi:10.1002/jnr.22167

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.