Share This Article:

Fabrication and Characterization of Phthalocyanine/C60 Solar Cells with Inverted Structure

Abstract Full-Text HTML Download Download as PDF (Size:280KB) PP. 461-464
DOI: 10.4236/aces.2012.24056    4,650 Downloads   7,375 Views   Citations

ABSTRACT

Photovoltaic and optical properties of fullerene/phthalocyanine heterojunction solar cells with normal and inverted structures were fabricated and investigated. Aluminum and gallium phthalocyanines were used for the n-type semiconductor. The solar cells with inverted structure had more stability compared to that with normal structure in the air. Nanostructures of the solar cells were investigated by transmission electron microscopy, and energy levels of the molecules were calculated and discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Yoshida, T. Oku, A. Suzuki, T. Akiyama and Y. Yamasaki, "Fabrication and Characterization of Phthalocyanine/C60 Solar Cells with Inverted Structure," Advances in Chemical Engineering and Science, Vol. 2 No. 4, 2012, pp. 461-464. doi: 10.4236/aces.2012.24056.

References

[1] M. Reyes-Reyes, K. Kim and D. L. Carroll, “High-Efficiency Photovoltaic Devices Based on Annealed Poly (3-Hexylthiophene) and 1-(3-Methoxycarbonyl)-Propyl-1-Phenyl-(6,6)C61 Blends,” Applied Physics Letters, Vol. 87, No. 8, 2005, pp. 87-89. doi:10.1063/1.2006986
[2] C. W. Tang, “Two-Layer Organic Photovoltaic Cell,” Applied Physics Letters, Vol. 48, No. 2, 1986, pp. 183-185. doi:10.1063/1.96937
[3] P. Peumans, S. Uchida and S. R. Forrest, “Efficient Bulk Heterojunction Photovoltaic Cells Using Small-Molecular-Weight Organic Thin Films,” Nature, Vol. 425, No. 11, 2003, pp. 158-162. doi:10.1038/nature01949
[4] F. Padinger, R. S. Rittberger and N. S. Saruciftci, “Effect of Postproduction Treatment on Plastic Solar Cells,” Advanced Functional Materials, Vol. 13, No. 1, 2003, pp. 85-88. doi:10.1002/adfm.200390011
[5] W. Ma, et al., “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology,” Advanced Functional Materials, Vol. 15, No. 10, 2005, pp. 1617-1622. doi:10.1002/adfm.200500211
[6] A. J. Hauch, et al., “Flexible Organic P3HT:PCBM Bulk-Heterojunction Modules with More than 1 Year Outdoor Lifetime,” Solar Energy Materials and Solar Cells, Vol. 92, No. 7, 2008, pp. 727-731. doi:10.1016/j.solmat.2008.01.004
[7] P. Peumans and S. R. Forrest, “Very-High-Efficiency Double-Heterostructure Copper Phthalocyanine/C60 Photovoltaic Cells,” Applied Physics Letters, Vol. 79, No. 1, 2001, pp. 126-128. doi:10.1063/1.1384001
[8] L. Li, et al., “Organic Thin-Film Transistors of Phthalocyanines,” Pure and Applied Chemistry, Vol. 80, No. 11, 2008, pp. 2231-2240. doi:10.1351/pac200880112231
[9] N. M. Bamsey, et al., “Integration of an M-Phthalocyanine Layer into Solution-Processed Organic Photovoltaic Cells for Improved Spectral Coverage,” Solar Energy Materials and Solar Cells, Vol. 95, No. 7, 2008, pp. 1970-1973. doi:10.1016/j.solmat.2011.01.042
[10] N. M. Bamsey, et al., “Heteromorphic Chloroindium Phthalocyanine Films for Improved Photovoltaic Performance,” Solar Energy Materials and Solar Cells, Vol. 95, No. 10, 2011, pp. 2937-2940. doi:10.1016/j.solmat.2011.06.006
[11] D. Y. Kim, F. So and Y. Gao, “Aluminum Phthalocyaninechloride/C60 Organic Photovoltaic Cells with High Open-Circuit Voltages,” Solar Energy Materials and Solar Cells, Vol. 93, No. 9, 2009, pp. 1688-1691. doi:10.1016/j.solmat.2009.04.003
[12] F. C. Krebs, “Air Stable Polymer Photovoltaics Based on a Process Free from Vacuum Steps and Fullerenes,” Solar Energy Materials and Solar Cells, Vol. 92, No. 7, 2008, pp. 715-726. doi:10.1016/j.solmat.2008.01.013
[13] T. Kuwabara, et al., ”Highly Durable Inverted-Type Organic Solar Cell Using Amorphous Titanium Oxide as Electron Collection Electrode Inserted between ITO and Organic Layer,” Solar Energy Materials and Solar Cells, Vol. 92, No. 11, 2008, pp. 1476-1482. doi:10.1016/j.solmat.2008.06.012
[14] Y. Lin, et al., “High-efficiency Inverted Polymer Solar Cells with Solution-Processed Metal Oxides,” Solar Energy Materials and Solar Cells, Vol. 95, No. 8, 2011, pp. 2511-2515. doi:10.1016/j.solmat.2011.05.005
[15] T. Oku, et al., “Fabrication and Characterization of Fullerene-Based Bulk Heterojunction Solar Cells with Porphyrin, CuInS2, Diamond and Exciton-Diffusion Blocking Layer,” Energies, Vol. 3, No. 4, 2010, pp. 671-685. doi:10.3390/en3040671
[16] T. Oku, et al., “Fabrication and Characterization of Fullerene/Porphyrin Bulk Heterojunction Solar Cells,” Journal of Physics and Chemistry of Solids, Vol. 71, No. 4, 2010, pp. 551-555. doi:10.1016/j.jpcs.2009.12.034
[17] T. Oku, et al., “Formation and Characterization of Polymer/Fullerene Bulk Heterojunction Solar Cells,” Journal of Physics and Chemistry of Solids, Vol. 69, No. 5-6, 2008, pp. 1276-1279. doi:10.1016/j.jpcs.2007.10.117

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.