Share This Article:

In Vitro Evaluation of Polyurethane-Chitosan Scaffolds for Tissue Engineering

Abstract Full-Text HTML Download Download as PDF (Size:1022KB) PP. 440-445
DOI: 10.4236/jbnb.2012.34044    4,473 Downloads   6,502 Views   Citations

ABSTRACT

In this work the use of Polyurethane (PU)-Chitosan(CH) scaffolds prepared by thermal induced phase separation (TIPS) for osteoblast proliferation and bone mineralization is described. Primary rat calvaria osteoblasts were seeded in the scaffolds and it was shown that supported cell adhesion and growth. The behavior osteoblast cells growing in the scaffold in function of the different ratio of PU and CH is presented. The results showed that TIPS is an appropriate technique for the production of PU-CH scaffolds with high potential for application as cell scaffolds in bone tissue engineering.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

I. Olivas-Armendariz, P. García-Casillas, A. Estrada, A. Martínez-Villafañe, L. Rosa and C. Martínez-Pérez, "In Vitro Evaluation of Polyurethane-Chitosan Scaffolds for Tissue Engineering," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 4, 2012, pp. 440-445. doi: 10.4236/jbnb.2012.34044.

References

[1] T. Courtney, M. S. Sacks, J. Stankus, J. Guan and W. R. Wagnera, “Design and Analysis of Tissue Engineering Scaffolds that Mimic Soft Tissue Mechanical Anisotropy,” Biomaterials, Vol. 27, No. 3, 2006, pp. 3131-3638.
[2] C. A. Martínez-Pérez, A. Martínez-Villafane, P. E. Garcia Casillas, A. Duarte Moller and J. Romero-García, “Porous Biodegradable Polyurethane Scaffolds Prepared by Thermally Induced Phase Separation,” Journal of Advanced Materials (Special Edition), Vol. 1, No. 1, 2006, pp. 5-11.
[3] S. S. Silva, S. M. C. Menezes and R. B. Garcia, “Synthesis and Characterization of Polyurethane-G-Chitosan,” European Polymer Journal, Vol. 39, No. 7, 2003, pp. 1515-1519.
[4] A. S. Rowlands, S. A. Lim, D. Martin and J. J. Cooper-White, “Polyurethane/Poly(lactic-co-glycolic) Acid Composite Scaffolds Fabricated by Thermally Induced Phase Separation,” Biomaterials, Vol. 28, No. 12, 2007, pp. 2109-2121. doi:10.1016/j.biomaterials.2006.12.032
[5] R. M. Schek, E. N. Wilke, S. J. Hollister and P. H. Krebsbach, “Combined Use of Designed Scaffolds and Adenoviral Gene Therapy for Skeletal Tissue Engineering,” Biomaterials, Vol. 27, No. 7, 2006, pp. 1160-1166. doi:10.1016/j.biomaterials.2005.07.029
[6] L. M. Mathieu, T. L. Mueller, P. E. Bourban, D. P. Piolette, R. Müller and J. A.Manson, “Architecture and Properties of Anisotropic Polymer Composite Scaffolds for Bone Tissue Engineering,” Bio-materials, Vol. 27, No. 6, 2006, pp. 905-916. doi:10.1016/j.biomaterials.2005.07.015
[7] A. Martino, M. Sittinger and M. V. Risbud, “Chitosan: A Versatile Biopolymer for Orthopedic Tissue-Engineering,” Biomaterials, Vol. 26, No. 30, 2005, pp. 5983-5990. doi:10.1016/j.biomaterials.2005.03.016
[8] S. F. Wang, W. D. Zhang and Y. J. Tong, “Preparation and Mechanical Properties of Chitosan/Carbon Nanotubes Composites,” Biomacromolecules, Vol. 6, No. 6, 2005, pp. 3067-3072. doi:10.1021/bm050378v
[9] M. J. Cooney, C. Lau, M. Windmeisser, B. Y. Liaw, T. Klotzbach and S. D. Minteer, “Design of Chitosan Gel Pore Structure: Towards Enzyme Catalyzed Flow-Through Electrodes,” Journal of Materials Chemistry, Vol. 18, No. 6, 2008, pp. 667-674. doi:10.1039/b710082e
[10] K. Anselme, “Osteoblast Adhesion on Biomaterials,” Bio-materials, Vol. 21, No. 7, 2000, pp. 667-681. doi:10.1016/S0142-9612(99)00242-2
[11] M. Gravel, T. Gross, R. Vago and M. Tabrizian, “Responses of Mesenchymal Stem Cell to Chitosan-Coralline Composites Microstructured Using Coralline as Gas Forming Agent,” Biomaterials, Vol. 27, No. 9, 2006, pp. 1899-1906. doi:10.1016/j.biomaterials.2005.10.020
[12] I. Manjubala, I. Ponomarev, I. Wilke and K. D. Jandt, “Growth of Osteoblast-Like Cells on Biomimetic Apatite-Coated Chitosan Scaffolds,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 84, No. 1, 2008, pp. 7-16. doi:10.1002/jbm.b.30838
[13] A. J. Salgado, M. E. Gomes, A. Chou, O. Coutinho, R. L. Reis and D. W. Hutmacher, “Preliminary Study on the Adhesion and Proliferation of Human Osteoblasts on Starch-Based Scaffolds,” Materials Science and Engineering C, Vol. 20, No. 1-2, 2002, pp. 27-33. doi:10.1016/S0928-4931(02)00009-7
[14] M. Zanetta, N. Quirici, F. Demarosi, M. C. Tanzi, L. Rimondini and S. Fare “Ability of Polyurethane Foams to Support Cell Proliferation and the Differentiation of MSCs into Osteoblasts,” Acta Biomaterial, Vol. 5, No. 4, 2009, pp. 1126-1136. doi:10.1016/j.actbio.2008.12.003
[15] O. Tsigkou, J. R. Jones, J. M. Polak and M. M. Stevens, “Differentiation of Fetal Osteoblasts and Formation of Mineralized Bone Nodules by 45S5 Bioglass? Conditioned Medium in the Absence of Osteogenic Supplements,” Biomaterials, Vol. 30, No. 21, 2009, pp. 3542-3550. doi:10.1016/j.biomaterials.2009.03.019

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.