Grounded and Floating Inductance Simulation Circuits Using VDTAs

Abstract

New electronically-controllable lossless grounded and floating inductance simulation circuits have been proposed employing Voltage Differencing Transconductance Amplifiers (VDTA). The proposed grounded inductance (GI) circuit employs a single VDTA and one grounded capacitor whereas the floating inductance (FI) circuit employs two VDTAs and one grounded capacitor. The workability of the new circuits has been verified using SPICE simulation with TSMC CMOS 0.18 μm process parameters.

Share and Cite:

D. Prasad and D. Bhaskar, "Grounded and Floating Inductance Simulation Circuits Using VDTAs," Circuits and Systems, Vol. 3 No. 4, 2012, pp. 342-347. doi: 10.4236/cs.2012.34048.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Senani, “New Single-Capacitor Simulations of Floating Inductors,” ElectroComponent Science and Technology, Vol. 10, No. 1, 1982, pp. 7-10. doi:10.1155/APEC.10.7
[2] A. Antoniou, “Gyrators Using Operational Amplifiers,” Electronics Letters, Vol. 3, No. 8, 1967, pp. 350-352. doi:10.1049/el:19670270
[3] A. Antoniou, “Realization of Gyrators Using Op-Amps and Their Use in RC Active Network Synthesis,” Proceedings of the IEEE, Vol. 116, 1969, pp. 1838-1850.
[4] R. Senani, “Realization of Single Resistance-Controlled Lossless Floating Inductance,” Electronics Letters, Vol. 14, No. 25, 1978, pp. 828-829. doi:10.1049/el:19780560
[5] R. Senani, “New Tunable Synthetic Floating Inductors,” Electronics Letters, Vol. 16, No. 10, 1980, pp. 382-383. doi:10.1049/el:19800270
[6] T. S. Rathore and B. M. Singhi, “Active RC Synthesis of Floating Immittances,” International Journal of Circuit Theory and Applications, Vol. 8, No. 2, 1980, pp. 184-188. doi:10.1002/cta.4490080212
[7] R. Nandi, “Lossless Inductor Simulation: Novel Configurations Using DVCCs,” Electronics Letters, Vol. 16, No. 17, 1980, pp. 666-667. doi:10.1049/el:19800472
[8] R. Senani, “Some New Synthetic Floating Inductance Circuits,” International Journal of Electronic and Communications, Vol. 35, 1981, pp. 307-310.
[9] R. Senani, “Canonic Synthetic Floating-Inductance Circuits Employing Only a Single Component-Matching Condition,” Journal of IETE, Vol. 27, No. 6, 1981, pp. 201-204.
[10] K. Pal, “Novel Floating Inductance Using Current Conveyors,” Electronics Letters, Vol. 17, No. 18, 1981, p. 638. doi:10.1049/el:19810447
[11] V. Singh, “Active RC Single-Resistance-Controlled Lossless Floating Inductance Simulation Using Single Grounded Capacitor,” Electronics Letters, Vol. 17, No. 24, 1981, pp. 920-921. doi:10.1049/el:19810641
[12] R. Senani, “Novel Lossless Synthetic Floating Inductor Employing a Grounded Capacitor,” Electronics Letters, Vol. 18, No. 10, 1982, pp. 413-414. doi:10.1049/el:19820283
[13] R. Senani, “Three Op-Amp Floating Immittance Simulators: A Retrospection,” IEEE Transactions on Circruits and Systems, Vol. 36, No. 11, 1989, pp. 1463-1465. doi:10.1109/31.41305
[14] A. Fabre, “Gyrator Implementation from Commercially Available Trans Impedance Operational Amplifiers,” Electronics Letters, Vol. 28, No. 3, 1992, pp. 263-264. doi:10.1049/el:19920162
[15] R. Senani and J. Malhotra, “Minimal Realizations of a Class of Operational Mirrored Amplifier Based Floating Impedance,” Electronics Letters, Vol. 30, No. 14, 1994, pp. 1113-1114. doi:10.1049/el:19940791
[16] S. A. Al-Walaie and M. A. Alturaigi, “Current Mode Simulation of Lossless Floating Inductance,” International Journal of Electronics, Vol. 83, No. 6, 1997, pp. 825-830. doi:10.1080/002072197135094
[17] W. Kiranon and P. Pawarangkoon, “Floating Inductance Simulation Based on Current Conveyors,” Electronics Letters, Vol. 33, 1997, pp. 1748-1749. doi:10.1049/el:19971202
[18] P. V. Anand Mohan, “Grounded Capacitor Based Grounded and Floating Inductance Simulation Using Current Conveyors,” Electronics Letters, Vol. 34, No. 11, 1998, pp. 1037-1038. doi:10.1049/el:19980783
[19] O. Cicekoglu, “Active Simulation of Grounded Inductors with CCII+s and Grounded Passive Elements,” International Journal of Electronics, Vol. 85, No. 4, 1998, pp. 455-462. doi:10.1080/002072198134003
[20] M. T. Abuelma’atti, M. H. Khan and H. A. Al-Zaher, “Simulation of Active-Only Floating Inductance,” Journal of RF-Engineering and Telecommunications, Vol. 52, 1998, pp. 161-164.
[21] H. Sedef and C. Acar, “A New Floating Inductor Circuit Using Differential Voltage Current Conveyors,” Journal of RF-Engineering and Telecommunications, Vol. 54, 2000, pp. 123-125.
[22] D. Biolek and V. Biolkova, “Tunable Ladder CDTABased Filters,” 4th Multiconference WSEAS, Spain, 2003, pp. 1-3.
[23] A. U. Keskin and H. Erhan, “CDBA-Based Synthetic Floating Inductance Circuits with Electronic Tuning Properties,” ETRI Journal, Vol. 27, No. 2, 2005, pp. 239242. doi:10.4218/etrij.05.0204.0055
[24] E. Yuce, S. Minaei and O. Cicekoglu, “A Novel Grounded Inductor Realization Using a Minimum Number of Active and Passive Components,” ETRI Journal, Vol. 27, No. 4, 2005, pp. 427-432. doi:10.4218/etrij.05.0104.0149
[25] W. Tangsrirat and W. Surakampontorn, “Electronically Tunable Floating Inductance Simulation Based on Current-Controlled Current Differencing Buffered Amplifiers,” Thammasat International Journal of Science and Technology, Vol. 11, No. 1, 2006, pp. 60-65.
[26] E. Yuce, “On the Realization of the Floating Simulators Using Only Grounded Passive Components,” Analog Integrated Circuits and Signal Processing, Vol. 49, 2006, pp. 161-166. doi:10.1007/s10470-006-9351-7
[27] T. Parveen and M. T. Ahmed, “Simulation of Ideal Grounded Tunable Inductor and Its Application in High Quality Multifunctional Filter,” Microelectronics Journal, Vol. 23, No. 3, 2006, pp. 9-13. doi:10.1108/13565360610680703
[28] E. Yuce, “Grounded Inductor Simulators with Improved Low Frequency Performances,” IEEE Transactions on Instrumentation and Measurement, Vol. 57, No. 5, 2008, pp. 1079-1084. doi:10.1109/TIM.2007.913822
[29] K. Pal and M. J. Nigam, “Novel Active Impedances Using Current Conveyors,” Journal of Active and Passive Electronic Devices, Vol. 3, 2008, pp. 29-34.
[30] D. Prasad, D. R. Bhaskar and A. K. Singh, “New Grounded and Floating Simulated Inductance Circuits using Current Differencing Transconductance Amplifiers,” Radioengineering, Vol. 19, No. 1, 2010, pp. 194-198.
[31] D. Biolek and V. Biolkova, “First-Order Voltage-Mode All-Pass Filter Employing One Active Element and One Grounded Capacitor,” Analog Integrated Circuits and Signal Processing, Vol. 65, No. 1, 2010, pp. 123-129. doi:10.1007/s10470-009-9435-2
[32] D. Prasad, D. R. Bhaskar and K. L. Pushkar, “Realization of New Electronically Controllable Grounded and Floating Simulated Inductance Circuits Using Voltage Differencing Differential Input Buffered Amplifiers,” Active and Passive Electronic Components, Vol. 2011, 2011, Article ID:101432. doi:10.1155/2011/101432
[33] R. Senani and D. R. Bhaskar, “New Lossy/Loss-Less Synthetic Floating Inductance Configuration Realized with Only two CFOAs,” Analog Integrated Circuits and Signal Processing, 2012. doi:10.1007/s10470-012-9897-5
[34] D. Biolek, R. Senani, V. Biolkova and Z. Kolka, “Active Elements for Analog Signal Processing; Classification, Review and New Proposals,” Radioengineering, Vol. 17, No. 4, 2008, pp. 15-32.
[35] A. Yesil, F. Kacar and H. Kuntman, “New Simple CMOS Realization of Voltage Differencing Transconductance Amplifier and Its RF Filter Application,” Radioengineering, Vol. 20, No. 3, 2011, pp. 632-637.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.