Design, Synthesis and Cancer Cell Line Activities of Pyrazolo[3,4-b]pyridine Derivatives

Abstract

Starting from 4,6-dimethyl-2-oxo-(1H)-3-pyridinecarbonitrile 1 and 3-aminopyrazolopyridine 4, a series of cyanopyri- dine derivatives 3a-i, Schiff bases 5a-f, urea and thiourea derivatives 6a-b, amide derivatives 7a-h, pyridopyra- zolopy-rimidine 8a-b and pyridopyrazolotriazine 10a-b were synthesized. Activities of eleven representative compounds were evaluated against A-549 (lung), HEPG2 (liver) and HCT-116 (colon) cancer cell lines. The findings revealed that some of the synthesized compounds showed remarkable anticancer activities, especially 8b which displayed the highest activity among the tested compounds with IC50 equal to 2.9, 2.6 and 2.3 µmol. In addition to synthesis and biological activities, we present discussion about the rationale of the design and activity of the potent compound 8b using struc- ture-based modeling tools.

Share and Cite:

M. Mohamed, Y. Awad, S. El-Hallouty and M. El-Araby, "Design, Synthesis and Cancer Cell Line Activities of Pyrazolo[3,4-b]pyridine Derivatives," Open Journal of Medicinal Chemistry, Vol. 2 No. 3, 2012, pp. 78-88. doi: 10.4236/ojmc.2012.23010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Park, “In 40 Years of Cancer Research, How Far Have We Come?” Time Heatland, 2011. http://healthland.time.com/2011/09/21/cancer-researchs-40th-anniversary-how-far-have-we-come/#more-43198
[2] G. Morgan, R. Ward and M. Barton, “The Contribution of Cytotoxic Chemotherapy to 5-Year Survival in Adult Malignancies,” Journal of Clinical Oncology, Vol. 16, No. 8, 2004, pp. 549-560. doi:10.1016/j.clon.2004.06.007
[3] F. R. Lichtenberg, “Contribution of Pharmaceutical Innovation to Longevity Growth in Germany and France,” Pharmacoeconomics, Vol. 30, No. 3, 2012, pp. 197-211. doi:10.2165/11587150-000000000-00000
[4] R. Li and J. A. Stafford, “Kinase Inhibitor Drugs,” 1st Edition, John Wiley & Sons, Hoboken, 2009. doi:10.1002/9780470524961
[5] D. R. Robinson, Y. Wu and S. Lin, “The Protein Tyrosine Kinase Family of the Human Genome,” Oncogene, Vol. 19, No. 49, 2000, pp. 5548-5557. doi:10.1038/sj.onc.1203957
[6] J. Zhang, P. L. Yang and N. S. Gray, “Targeting Cancer with Small Molecule Kinase Inhibitors,” Nature Reviews Cancer, Vol. 9, No. 1, 2009, pp. 28-39. doi:10.1038/nrc2559
[7] B. J. Druker, S. Tamura, E. Buchdunger, S. Ohno, G. M. Segal, S. Fanning, J. Zimmermann and N. B. Lydon, “Effects of a Selective Inhibitor of the Abl Tyrosine Kinase on the Growth of Bcr-Abl Positive Cells,” Nature Medicine, Vol. 2, No. 5, 1996, pp. 561-566. doi:10.1038/nm0596-561
[8] R. Capdeville, E. Buchdunger, J. Zimmermann and A. Matter, “Glivec (STI571, Imatinib), a Rationally Developed, Targeted Anticancer Drug,” Nature Reviews Drug Discovery, Vol. 1, No. 7, 2002, pp. 493-502. doi:10.1038/nrd839
[9] M. C. Heinrich, D. J. Griffith, B. J. Druker, C. L. Wait, K. A. Ott and A. J. Zigler, “Inhibition of c-Kit Receptor Tyrosine Kinase Activity by STI 571, a Selective Tyrosine Kinase Inhibitor,” Blood, Vol. 96, No. 3, 2000, pp. 925-932.
[10] C. M. Christensen, “The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail,” Harvard Business School Press, Cambridge, 1997.
[11] J. P. Overington, B. Al-Lazikani and A. L. Hopkins, “How Many Drug Targets Are There?” Nature Reviews Drug Discovery, Vol. 5, No. 12, 2006, pp. 993-996. doi:10.1038/nrd2199
[12] S. Frantz, “Drug Discovery: Playing Dirty,” Nature, Vol. 437, No. 7061, 2005, pp. 942-943. doi:10.1038/437942a
[13] A. L. Hopkins, “Drug Discovery: Predicting Promiscuity,” Nature, Vol. 462, No. 7270, 2009, pp. 167-168. doi:10.1038/462167a
[14] J. Vesely, L. Havlicek, M. Strnad, J. J. Blow, A. Donella-Deana, L. Pinna, D. S. Letham, J. Kato, L. Detivaud and S. LeClerc, “Inhibition of Cyclin-Dependent Kinases by Purine Analogues,” European Journal of Biochemistry, Vol. 224, No. 2, 1994, pp. 771-786. doi:10.1111/j.1432-1033.1994.00771.x
[15] L. Meijer and E. Raymond, “Roscovitine and Other Purines as Kinase Inhibitors, from Starfish Oocytes to Clinical Trials,” Accounts of Chemical Research, Vol. 36, No. 6, 2003, pp. 417-425. doi:10.1021/ar0201198
[16] R. Jorda, L. Havlí?ek, I. W. McNae, M. D. Walkinshaw, J. Voller, S A. turc, J. Navratilova, M. Kuzma, M. Mistrik, J. Bartek, M. Strnad and V. Krystof, “Pyrazolo[4,3-d]pyrimidine Bioisostere of Roscovitine: Evaluation of a Novel Selective Inhibitor of Cyclin-Dependent Kinases with Antiproliferative Activity,” Journal of Medicinal Chemistry, Vol. 54, No. 8, 2011, pp. 2980-2993. doi:10.1021/jm200064p
[17] M. F. Bra?a, M. Cacho, M. L. Garc?′a, E. P. Mayoral, B. Lo’pez, B. de Pascual-Teresa, A. Ramos, N. Acero, F. Llinares, D. Mu?oz-Mingarro, O. Lozach and L. Meijer, “Pyrazolo[3,4-c]pyridazines as Novel and Selective Inhibitors of Cyclin-Dependent Kinases,” Journal of Medicinal Chemistry, Vol. 48, No. 22, 2005, pp. 6843-6854. doi:10.1021/jm058013g
[18] F. A. Yassin, “Synthesis, Reactions and Biological Activity of 2-Substituted 3-Cyano-4,6-Dimethylpyridine Derivatives,” Chemistry of Heterocyclic Compounds, Vol. 45, No. 1, 2009, pp. 35-41. doi:10.1007/s10593-009-0222-x
[19] A. M. Hussein, E. A. Ishak, A. A. Atalla, S. Abdel Hafiz and M. H. Elnagdi, “Phenylacetone as Building Blocks in Heterocyclic Synthesis: Synthesis of PolyfunctionallySubstituted Pyridines, and Fused Pyridines,” Phosphorus, Sulfur, and Silicon and the Related Elements, Vol. 182, No. 12, 2007, pp. 2897-2917. doi:10.1080/10426500701542858
[20] U. Schulze-Gahmen, H. L. De Bondt and S. Kim, “HighResolution Crystal Structures of Human CyclinDependent Kinase 2 with and without ATP:? Bound Waters and Natural Ligand as Guides for Inhibitor Design,” Journal of Medicinal Chemistry, Vol. 39, No. 23, 1996, pp. 4540-4546. doi:10.1021/jm960402a
[21] C. E. Arris, F. T. Boyle, A. H. Calvert, N. J. Curtin, J. A. Endicott, E. F. Garman, A. E. Gibson, B. T. Golding, S. Grant, R. J. Griffin, P. Jewsbury, L. N. Johnson, A. M. Lawrie, D. R. Newell, M. E. Noble, E. A. Sausville, R. Schultz and W. Yu, “Identification of Novel Purine and Pyrimidine Cyclin-Dependent Kinase Inhibitors with Distinct Molecular Interactions and Tumor Cell Growth Inhibition Profiles,” Journal of Medicinal Chemistry, Vol. 43, No. 15, 2000, 2797-2804. doi:10.1021/jm990628o
[22] P. Furet, “X-Ray Crystallographic Studies of CDK2, a Basis for Cyclin-Dependent Kinase Inhibitor Design in Anti-Cancer Drug Research,” Current Medicinal Chemistry Anti-Cancer Agents, Vol. 3, No. 1, 2003, pp. 15-23. doi:10.2174/1568011033353515

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.