Share This Article:

On Some Properties of the Heisenberg Laplacian

Abstract Full-Text HTML XML Download Download as PDF (Size:131KB) PP. 354-357
DOI: 10.4236/apm.2012.25051    3,527 Downloads   6,122 Views   Citations
Author(s)    Leave a comment

ABSTRACT

Let IHn be the (2n+1) -dimensional Heisenberg group and let Lα and be the sublaplacian and central element of the Lie algebra of IHn respectively. Forα=0 denote by L0=L the Heisenberg Laplacian and let K ∈Aut(IHn) be a compact subgroup of Au-tomorphism of IHn. In this paper, we give some properties of the Heisenberg Laplacian and prove that L and T generate the K-invariant universal enveloping algebra, U(hn)k of IHn.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Egwe, "On Some Properties of the Heisenberg Laplacian," Advances in Pure Mathematics, Vol. 2 No. 5, 2012, pp. 354-357. doi: 10.4236/apm.2012.25051.

References

[1] G. B. Folland and E. M. Stein, “Estimate for the Complex and Analysis on the Heisenberg Group,” Communications on Pure and Applied Mathematics, Vol. 27, No. 4, 1974, pp. 429-522. doi:10.1002/cpa.3160270403
[2] R. Howe, “On the Role of the Heisenberg Group in Harmonic Analysis,” Bulletin of the American Mathematical Society, Vol. 3, No. 2, 1980, pp. 821-843.doi:10.1090/S0273-0979-1980-14825-9
[3] E. M. Stein, “Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals,” Princeton University Press, Princeton, 1993.
[4] G. B. Folland, “A Fundamental Solution for a Subelliptic Operator,” Bulletin of the American Mathematical Society, Vol. 79, No. 2, 1973, pp. 373-376. doi:10.1090/S0002-9904-1973-13171-4
[5] L. P. Rothschild, “Local Solvability of Left-Invariant Differential Operators on the Heisenberg Group,” Proceedings of the American Mathematical Society, Vol. 74, No. 2, 1979, pp. 383-388. doi:10.1090/S0002-9939-1979-0524323-X
[6] M. E. Egwe, “Aspects of Harmonic Analysis on the Heisenberg Group,” Ph.D. Thesis, University of Ibadan, Ibadan, 2010.
[7] H. Lewy, “An Example of a Smooth Linear Partial Differential Operator without Solution,” Annals of Mathematics, Vol. 66, No. 2, 1957, pp. 155-158. doi:10.2307/1970121
[8] U. N. Bassey and M. E. Egwe, “Non-Solvability of Heisenberg Laplacian by Factorization,” Journal of Mathematical Sciences, Vol. 21, No. 1, 2010, pp. 11-15.
[9] P. J. Olver, “Application of Lie Groups to Differential Equations,” Graduate Texts in Mathematics, Springer- Verlag, Berlin, 1986.
[10] S. Helgason, “Groups and Geometric Analysis: Integral Geometry, Differential Operators and Spherical Functions,” Academic Press Inc., New York, 1984.
[11] V. S. Varadarajan, “Lie Groups, Lie Algebras and Their Representations,” Springer-Verlag, Berlin, 1984.
[12] R. Strichartz, “Harmonic Analysis and Radon Transforms on the Heisenberg Group,” Journal of Functional Analysis, Vol. 96, No. 2, 1991, pp. 350-406.doi:10.1016/0022-1236(91)90066-E

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.