Nano-Coating Process for Si [1 0 0] Wafer Using Atmospheric Pressure Plasma Jet (APPJ)

Abstract

Three-electrode plasma jet system consisting of a perforated dielectric tube with two outer and one floating inner electrodes was developed and employed for nano-coating processes of Si [1 0 0] wafer. Lowered gas breakdown voltage, increasing plasma density and increased discharge current were achieved by using the floating inner electrode. The low temperature (Nonthermal) Atmospheric Pressure Plasma protective coating technique using precursor-containing gases (Ar, O2 and OMCTS mixture) which injected into Plasma Jet (APPJ), there are several techniques are introduced here to avoid substrate damage including increasing plasma density without increasing the kinetic energy of the ion bombardment. Furthermore some few precautions are given here to insure good media for silicon wafer prepared for coating.

Share and Cite:

A. Galaly, "Nano-Coating Process for Si [1 0 0] Wafer Using Atmospheric Pressure Plasma Jet (APPJ)," Journal of Modern Physics, Vol. 3 No. 9, 2012, pp. 1031-1039. doi: 10.4236/jmp.2012.39136.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] U. Lommatzsch, D. Pasedag, A. Baalmann and H.-E. Wagner, “Atmospheric Pressure Plasma Jet Treatment of Polyethylene Surfaces for Adhesion Improvement,” Plasma Processes and Polymers, Vol. 4, Supple. 1, 2007, pp. 1041-1045. doi:10.1002/ppap.200732402
[2] C. Huang, S.-Y. Wu, Y.-C. Chang, C.-H. Pan and C.-Y. Tsai, “The Protection of Flexible DSSC Polymeric Substrate using Atmospheric Pressure Plasma Coating Special Issue for the 2009 International Symposium of Dye-Sensitized Solar Cells,” Journal of the Chinese Chemical Society, Vol. 57, No. 5B, 2010, p. 1208.
[3] L. Zajickova, J. Janca, and V. Perina, “Characterization of Silicon Oxide Thin Films Deposited by Plasma Enhanced Chemical Vapour Deposition from Octamethylcyclotetrasiloxane/Oxygen Feeds,” Thin Solid Films, Vol. 338, No. 1-2, 1999, pp. 45-59. doi:10.1016/S0040-6090(98)00976-6
[4] J. Benedikt, K. Focke, A. Yanuas-Gil and A. V. Keudell, “Atmospheric Pressure Microplasma Jet as a Depositing Tool,” Applied Physics Letters, Vol. 89, No. 25, 2006, pp. 251-253. doi:10.1063/1.2423233
[5] Y. Qi, Z. G. Xiao and T. D. Mantei, “Comparison of Silicon Dioxide Layers Grown from Three Polymethylsiloxane Precursors in a High-Density Oxygen Plasma,” Journal of Vacuum Science & Technology A, Vol. 21, No. 4, 2003, pp. 1064-1068.
[6] W. Bensch and W. Bergholz, “An FT-IR Study of Silicon Dioxides for VLSI Microelectronics,” Semiconductor Science and Technology, Vol. 5, No. 5, 1990, p. 421. doi:10.1088/0268-1242/5/5/008
[7] F. Massines, N. Gherardi, A. Fornelli and S. Martin, “Atmospheric Pressure Plasma Deposition of Thin Films by Townsend Dielectric Barrier Discharge,” Surface and Coatings Technology, Vol. 200, No. 5-6, 2005, pp. 1855-1861. doi:10.1016/j.surfcoat.2005.08.010
[8] T. P. Kasih, S. Kuroda and H. Kubota, “A Nonequilibrium, Atmospheric-Pressure Argon Plasma Torch for Deposition of Thin Silicon Dioxide Films,” Chemical Vapor Deposition, Vol. 13, No. 4, 2007, pp. 169-175. doi:10.1002/cvde.200606535
[9] Y. Sawada, S. Ogawa and M. Kogoma, “Synthesis of Plasma-Polymerized Tetraethoxysilane and Hexame-Thyldisiloxane Films Prepared by Atmospheric Pressure Glow Discharge,” Journal of Physics D: Applied Physics, Vol. 28, No. 8, 1995, p. 1661. doi:10.1088/0022-3727/28/8/015
[10] M. Noborisaka, T. Hirako, A. Shirakura, T. Watanabe, M. Morikawa, M. Seki and T. Suzuki, “Synthesis of Diamond-Like Carbon Films on Planar and Non-Planar Geometries by the Atmospheric Pressure Plasma Chemical Vapor Deposition Method,” Japanese Journal of Applied Physics, Vol. 51, No. 9, 2012, Article ID: 090117.
[11] L. J. Ward, W. C. E. Schofield, J. P. S. Badyal, A. J. Goodwin and P. J. Merlin, “Atmospheric Pressure Glow Discharge Deposition of Polysiloxane and SiOx Film,” Langmuir, Vol. 19, No. 6, 2003, pp. 2110-2114. doi:10.1021/la0204287
[12] A. Ramamoorthy, M. Rahman, D. A. Mooney, J. M. D. MacElroy and D. P. Dowling, “The Influence of Processes Parameters on Chemistry, Roughness and Morphology of Siloxane Films Deposited by an Atmospheric Plasma Jet System,” Plasma Processes and Polymers, Vol. 6, Supple. 1, 2009, p. S530. doi:10.1002/ppap.200931109
[13] D. P. Dowling, A. Ramamoorthy, M. Rahman, D. A. Mooney and J. M. D. MacElroy, “Influence of Atmospheric Plasma Source and Gas Composition on the Properties of Deposited Siloxane Coatings,” Plasma Processes and Polymers, Vol. 6, Supple. 1, 2009, p. S483. doi:10.1002/ppap.200931110
[14] S. E. Babayan, J. Y. Jeong and R. F. Hicks, “Deposition of Silicon Dioxide Films with an Atmospheric-Pressure Plasma Jet,” Plasma Sources Science and Technology, Vol. 7, No. 3, 1998, p. 286. doi:10.1088/0963-0252/7/3/006
[15] L. O’Neill, N. Shephard, S. Leadley and J. Adhes, “Atmospheric Pressure Plasma Polymerised Primer to Promote Adhesion of Silicones,” The Journal of Adhesion, Vol. 84, No. 6, 2008, pp. 562-577. doi:10.1080/00218460802161624
[16] J. Albaugh, C. O’Sullivan and L. O’Neill, “Controlling Deposition Rates in an Atmospheric Pressure Plasma System,” Surface and Coatings Technology, Vol. 203, No. 5-7, 2008, pp. 844-847. doi:10.1016/j.surfcoat.2008.05.047
[17] G. Guethlein, T. Houck, J. McCarrick and S. Sampayan, “Faraday Cup Measurements of Ions Backstreaming into a Electron Beam Impinging on a Plasma Plume,” Proceedings of Linear Accelerator Conference, Monterey, 21- 25 August 2000, pp. 467-469.
[18] “Viscosity.” http://en.wikipedia.org/wiki/Viscosity
[19] F. M. White, “Viscous Fluid Flow,” McGraw-Hill, New York, 1974.
[20] R. B. Bird, W. E. Stewart and E. N. Lightfoot, “Transport Phenomena,” Wiley, New York, 1960.
[21] M. Lieberman and A. Lichtenberg, “Principles of Plasma Discharges and Materials Processing,” John Wiley & Sons, New York, 1994.
[22] M. Shenton, M. Lovell-Hoare and G. Steven, “Adhesion Enhancement of Polymer Surfaces by Atmospheric Plasma Treatment,” Journal of Physics D: Applied Physics, Vol. 34, No. 18, 2001, p. 2754. doi:10.1088/0022-3727/34/18/307
[23] A. Hollander, R. Wilken and J. Behnisch, “Subsurface Chemistry in the Plasma Treatment of Polymers,” Surface and Coatings Technology, Vol. 116-119, 1999, pp. 788- 791. doi:10.1016/S0257-8972(99)00297-2
[24] R. Gardri, J. Roth, and Z. Chen, “Sterilization and Plasma Processing of Room Temperature Surfaces with a One Atmosphere Uniform Glow Discharge Plasma (OAU-GDP),” Surface and Coatings Technology, Vol. 131, No. 1-3, 2000, pp. 528-541. doi:10.1016/S0257-8972(00)00803-3
[25] S. Herbert, D. Shinozaki and R. Collactott, “Fine-Scale Morphology of Ultraviolet-Ozone Etched Polyethylene,” Journal of Materials Science, Vol. 31, No. 17, 1996, pp. 4655-4661. doi:10.1007/BF00366366

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.