Performance Improvement of the LM Device and Its Application to Precise Measurement of Motion Trajectories within a Small Range with a Machining Centre
Hua Qiu, Yong Yue, Akio Kubo, Chao Lin, Kai Cheng, Dehong Huo, Dayou Li
1Department of Mechanical Engineering, Faculty of Engineering, Kyushu Sangyo University, Fukuoka City, Japan.
Advanced Manufacturing and Enterprise Engineering Department, School of Engineering and Design, Brunel University, Uxbridge, UK.
Department of Computer Science and Technology, University of Bedfordshire, Luton, UK.
Department of Mechanical Engineering, Faculty of Engineering, Kyushu Sangyo University, Fukuoka City, Japan.
Product Design and Engineering Department, School of Engineering and Information Sciences, Middlesex University, London, UK.
State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China.
DOI: 10.4236/mme.2012.23010   PDF    HTML   XML   4,285 Downloads   7,442 Views   Citations

Abstract

In order to apply the LM device previously developed to precisely measuring small motion trajectories located on the different motion planes, three major improvements are successfully performed under the condition of completely maintaining the advantages of the device. These improvements include 1) development of a novel connection mechanism to smoothly attach the device to the spindle of a machining centre; 2) employment of a new data sampling method to achieve a high sampling frequency independent of the operating system of the control computer; and 3) proposal of a set-up method to conveniently install the device on the test machining centre with respect to different motion planes. Practical measurement experiment results with the improved device on a machining centre sufficiently demonstrate the effectiveness of the improvements and confirm several features including a very good response to small displacement close to the resolution of the device, high precision, repeatability and reliance. Moreover, based on the measurement results for a number of trajectories for a wide range of motion conditions, the error characteristics of small size motions are systematically discussed and the effect of the movement size and feed rate on the motion accuracy is verified for the machining centre tested.

Share and Cite:

H. Qiu, Y. Yue, A. Kubo, C. Lin, K. Cheng, D. Huo and D. Li, "Performance Improvement of the LM Device and Its Application to Precise Measurement of Motion Trajectories within a Small Range with a Machining Centre," Modern Mechanical Engineering, Vol. 2 No. 3, 2012, pp. 71-85. doi: 10.4236/mme.2012.23010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. D. Kwon and M. Burdekin, “Development and Application of A System for Evaluating the Feed-Drive Errors on Computer Numerically Controlled Machine Tools,” Precision Engineering, Vol. 19, No. 2, 1996, pp. 133-140.
[2] H. D. Kwon and M. Burdekin, “Adjustment of CNC Machine Tool Controller Setting Values by an Experimental Method,” International Journal of Machine Tools & Manufacture, Vol. 38, No. 9, 1998, pp. 1045-1065.doi:10.1016/S0890-6955(97)00058-8
[3] Y. Kakino, Y. Ihara, S. Lin, S. Hayama, K. Kawakami and M. Hamamura, “Measurement of Motion Accuracy and Improvement of Machining Accuracy on Ultra-High Precision NC Machine Tools by Using Cross Grid Encoder Test,” Journal of the Japan Society for Precision Engineering, Vol. 62, No. 11, 1996, pp. 1612-1616.doi:10.2493/jjspe.62.1612
[4] T. Schmitz and J. Ziegert, “Dynamic Evaluation of Spa- tial CNC Contouring Accuracy,” Precision Engineering, Vol. 24, No. 2, 2000, pp. 99-118.doi:10.1016/S0141-6359(99)00034-3
[5] X. Mei, M. Tsutsumi, T. Yamazaki and N. Sun, “Study of the Friction Error for a High-Speed High Precision Table,” International Journal of Machine Tools & Manufacture, Vol. 41, No. 10, 2001, pp. 1405-1415.doi:10.1016/S0890-6955(01)00025-6
[6] X. Mei, M. Tsutsumi, T. Tao and N. Sun, “Study on the Compensation of Error by Stick-Slip for High-Precision Table,” International Journal of Machine Tools & Manu- facture, Vol. 44, No. 6, 2004, pp. 503-510.doi:10.1016/j.ijmachtools.2003.10.027
[7] Y. Suzuki, A. Matsubara and Y. Kakino, “A Study on Improvement of Contouring Accuracy in Small Circular Motion for NC Machine Tools—Improvement of Accu- racy by Altering the Feed Rate Limitation Method,” Journal of the Japan Society for Precision Engineering, Vol. 70, No. 6, 2004, pp. 1266-1270.doi:10.2493/jjspe.70.746
[8] K. Iwasawa, A. Iwama and K. Mitsui, “Development of a Measuring Method for Several Types of Programmed Tool Paths for NC Machine Tools Using a Laser Displacement Interferometer and a Rotary Encoder,” Preci- sion Engineering, Vol. 28, No. 4, 2004, pp. 399-408.doi:10.1016/j.precisioneng.2004.01.004
[9] J. H. Lee, Y. Liu and S.H. Yang, “Accuracy Improve- ment of Miniaturized Machine tool: Geometric Error Modelling and Compensation,” International Journal of Machine Tools & Manufacture, Vol. 46, No. 12-13, 2006, pp. 1508-1516. doi:10.1016/j.ijmachtools.2005.09.004
[10] D. Kono, A. Matsubara, I. Yamaji and T. Fujita, “High- Precision Machining by Measurement and Compensation of Motion Error,” International Journal of Machine Tools & Manufacture, Vol. 48, No. 10, 2008, pp. 1103-1110.doi:10.1016/j.ijmachtools.2008.02.005
[11] S. H. H. Zargarbashi and J. R. R. Mayer, “A Model Based Method for Centring Double Ball Bar Test Results Preventing Fictitious Ovalization Effects,” International Journal of Machine Tools & Manufacture, Vol. 45, No. 10, 2005, pp. 1132-1139.doi:10.1016/j.ijmachtools.2005.01.003
[12] http://www.heidenhain.co.de/
[13] S. Ibaraki, W. Goto, A. Matsubara, T. Ochi and M. Hamamura, “Self-Calibration of a Cross Grid Encoder,” Journal of the Japan Society of Precision Engineering, Vol. 72, No. 8, 2006, pp. 1032-1037.
[14] A. Du, S. Zhang and M. Hong, “Development of a Multi-Step Measuring Method for Motion Accuracy of NC Machine Tools Based on Cross Grid Encoder,” International Journal of Machine Tools & Manufacture, Vol. 50, No. 3, 2010, pp. 270-280.doi:10.1016/j.ijmachtools.2009.11.010
[15] H. Qiu, Y. Li and Y.B. Li, “A New Method and Device for Motion Accuracy Measurement of NC Machine Tools, Part 1: Principle and Equipment,” International Journal of Machine Tools & Manufacture, Vol. 41, No. 4, 2001, pp. 521-534. doi:10.1016/S0890-6955(00)00092-4
[16] H. Qiu, Y.B. Li and Y. Li, “A New Method and Device for Motion Accuracy Measurement of NC Machine Tools, Part 2: Device Error Identification and Trajectory Meas- urement of General Planar Motions,” International Journal of Machine Tools & Manufacture, Vol. 41, No. 4, 2001, pp. 535-554. doi:10.1016/S0890-6955(00)00093-6
[17] ISO 230-1, “Test Code for Machine Tools—Part 1: Geo- metric Accuracy of Machines Operating under No-Load or Finishing Conditions,” 1996.
[18] H. Qiu, “Velocity Measurement for Planar Motions of Machines Using the LM Measuring Device,” Journal of Robotics and Mechatronics, Vol. 10, No. 4, 1998, pp. 358-363.
[19] Y. Kakino, Y. Ihara, N. Y. akatsu, M. Yonetani and T. Teshima, “A Study on the Motion Accuracy of NC Ma- chine Tools (4th Report)—Compensating for Decreasing Error of the Circle Radius during Circular Interpolation Motion,” Journal of the Japan Society for Precision En- gineering, Vol. 54, No. 6, 1988, pp. 1113-1118.doi:10.2493/jjspe.54.1113
[20] Y.T. Shih, C.S. Chen and A.C. Lee, “Path Planning for CNC Contouring around a Corner,” JSME International Journal, Series C, Vol. 47, No. 1, 2004, pp. 412-420.doi:10.1299/jsmec.47.412

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.