Structural analysis, metamorphism, and geochemistry of the Archean granitoids-greenstones of the Sukumaland Greenstone Belt around Geita Hills, Northern Tanzania

Abstract

Greenstone rocks, which include Banded Iron Formations (BIFs), tuffs, volcanic flows (basalt, andesite and rhyolite), and clastic sedimentary rocks (shale-mudstone, greywacke-sandstone and conglomerate), crop out around Geita Hills and are flanked by granites and granodiorites. BIFs and tuffs occupy larger area than other lithological units, which crop out as patches. Structural analysis indicates that layers of green-stone rocks are folded and display a regional fold axis with an attitude of 320o/40o. Low-grade metamorphic mineral assemblages (actinolite-epidote-chlorite in basalts and muscovite-epidote-chlorite in granitoids) are common in these rocks; this indicates a regional metamorphism at greenschist facies. However, BIFs and basalts are locally metamorphosed to epidote-amphibolite and amphibolite facies. Basalts belong to the tholeiite series whereas granites, diorites and rhyolites belong to the calcalkaline series. Chondrite normalized rare earth element pattern of basalt is flat and plot slightly below the average N-MORB values suggesting the enrichment of the light rare earth elements, which means that mantle magma source was an E-MORB. Granitoids and rhyolites have strong affinities to the continental arc source magma displaying strong enrichments in the LREEs with (La/Sm)N values ranging between 2.53 and 3.95 in rhyolites and between 4.08 and 5.40 in granitoids. The granitoids are classified as the I-type synorogenic metaluminous granites and granodiorites. Geochemical signatures suggest that the Geita Hills basalts erupted at the enriched mid ocean ridge setting of the back arc setting, and the granites, granodiorite and rhyolite formed in a volcanic arc setting particularly the continental arc.

Share and Cite:

Boniface, N. and Mruma, A. (2012) Structural analysis, metamorphism, and geochemistry of the Archean granitoids-greenstones of the Sukumaland Greenstone Belt around Geita Hills, Northern Tanzania. Natural Science, 4, 526-535. doi: 10.4236/ns.2012.48070.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Condie, K.C. (1981) Archaean greenstone belts. Amsterdam, Elsevier, 434p.
[2] Condie, K.C. (1989) Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: Identification and significance. Lithos, 23, 1-18. doi:10.1016/0024-4937(89)90020-0
[3] Fraser, I.A. and Heywood, W.W. (1978) Metamorphism in the Canadian Shield. Geological Survey of Canada paper, 10-78. doi:10.4095/133909
[4] Barth, H. (1990) Provisional Geological map of lake Victoria gold field, Tanzania. Schweizer Mineralogische und Petrographische Mitteilungen, 43, 127-137.
[5] Borg, G. and Krogh, T. (1999) Isotopic age data of single zircon from the Archaean Sukumaland Greenstone Belt. Tanzania. Journal of African Earth Sciences, 29, 301-312. doi:10.1016/S0899-5362(99)00099-8
[6] Manya, S., and Maboko, M.A.H. (2003) Dating basaltic volcanism in the Neoarchaean Sukumaland Greenstone Belt of the Tanzania Craton using the Sm-Nd method: Implications for the geological evolution of the Tanzania Craton. Precambrian Research, 121, 35-45. doi:10.1016/S0301-9268(02)00195-X
[7] Borg, G., and Shackleton, R.M. (1997) The Tanzania and NE Zaire Craton. In: de Wit, M.J. and Ashwal, L.D., Eds., Greenstone Belts, Clarendon Press Oxford, 608-619.
[8] Bell, K. and Dodson, M.H. (1981) The geochronology of the Tanzania shield. Journal of Geology, 89, 109-229. doi:10.1086/628567
[9] Borg, G. (1992) New aspects on the lithostratigraphy and evolution of Siga hills, an Archaean granite-Greenstone terrain in NW-Tanzania. Zeitschrift Angrewandte Geologie, 38, 89-93.
[10] Windley, B.F., (1995) The evolving continents. 3rd Edition, John Wiley and Sons, New York.
[11] Borg, G. (1994) The Geita Gold deposit in NW Tanzania. Geology, Ore petrology, Geochemistry and timing of events. Geologische Jahrbuch, 100, 545-595.
[12] Rammlmair, D., H?hndorf, A., Borg, G. and Hiza, G.N. (1990) Nouvelles Datations Isotopiques des granites et des gabbros de la Region “greenstone” Granitique du Sukumaland, N.W. Tanzanie. 15th Colloquium African Geology (Abstract Volume), Nan-cy.
[13] Quennel, A.M., McKinley, A.C.M. and Aitken, W.G. (1956) Summary of the geology of Tanganyika Memoir I, Part II: Introduction and Stratigraphy. Government Printer, Dar es Salaam.
[14] Boniface, N. (2011) Contact metamorphism in the supracrustal rocks of the Sukumaland Greenstone Belt in the North West Tanzania. Tanzania Journal of Sciences, 37, 144-155.
[15] Gabe-Schonberg, C.D. (1993) Simultaneous determination of thirty seven trace elements in twenty-eight international rock standards by ICP-MS. Geostandards New-sletter, 17, 81-97. doi:10.1111/j.1751-908X.1993.tb00122.x
[16] Mruma, A.H. (2009) Multi-structures of a single deformation phase in the Sukumaland Greenstone Belt. Tanzania Journal of Earth Sciences, 1, 75-86.
[17] Borg, G. (1993) Epigenetic, BIF-hosted Au mineralization at Geita, Tanzania, Evidence from structural geology. Ore petrography and geochemistry. In: Hach-Ali, F., Torres-Ruiz and Gervilla, Eds., Current Research in geology Applied to Ore Deposit, Granada, 415-418.
[18] McGrath, A. (1999) Structural and lithological controls on gold mineralization in the Geita Gold mine, Northern Tanzania. Masters Thesis, University of Leicester, United Kingdom.
[19] Le Maitre, R.W., Bateman, P., Dudeka, A., Keller, J., Lameyre Le Bas M.J., Sabine, P.A., Schimid, R., Sorensen, H., Streckeisen, A., Woolley, A.R. and Zannettin, B. (1989) A classification of igneous rocks and glossary of items. Blackwell, Oxford.
[20] O`Connor, J.T. (1965) A classification of quartz rich igneous rock based on feldspar ratios. US Geological Survey, 525B, B79-B84.
[21] Maniard, P.D. and Piccoli, P.M. (1989) Tectonic discrimination of granitoids. Geological society of America bulletin, 101, 635-643. doi:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[22] Batchelor, R.A. and Bowden, P. (1985) Petrogenetic interpretation of granitoid rock series using multcationic parameters. Chemical Geology, 48, 43-55. doi:10.1016/0009-2541(85)90034-8
[23] Irvine, T.N. and Baragar W.R.A. (1971) A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-548. doi:10.1139/e71-055
[24] Chapell, B.W. and White, A.J.R. (1984) I and S type granites in the Lachlan Fold Belt, Southeastern Australia. In: Kequin, X. and Guanchi, T., Eds., Geology of Granite and Their Metallogenic Relations, Beijing Science Press, 87-101.
[25] Schilling, J.G., Zajac, M., Evans, R., Johnston, T., White, W., Devine, J.D. and Kingsley, R. (1983) Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N. American Journal of Science, 238, 510-586. doi:10.2475/ajs.283.6.510
[26] Arevalo, R. Jr. and McDonough, W.F. (2010) Chemical variations and regional diversity observed in MORB. Chemical Geology, 271, 70-85. doi:10.1016/j.chemgeo.2009.12.013
[27] Boynton, W.V. (984) Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson, P., Ed., Rare Earth Element Geochemistry, Amsterdam, Elsevier, 63- 114.
[28] Harris, N.B.W., Pearce, J.A. and Tindle, A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983.
[29] John, T., Schenk, V., Haase, K., Scherer, E. and Tembo, F. (2003) Evidence for a Neoproterozoic ocean in south-central Africa from midoceanic-ridge-type geochemical signatures and pressure-temperature estimates of Zambian eclogites. Geology, 31, 243-246. doi:10.1130/0091-7613(2003)031<0243:EFANOI>2.0.CO;2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.