Age-dependent changes in the exocytotic efficacy in Kir6.2 ablated mouse pancreatic β-cells

Abstract

In this study, we aimed to examine the electrophysio- logical properties of β-cells in Kir6.2-/- mice using fresh pancreatic tissue slice preparation. This prepa-ration is advantageous since it preserves socio-cellular context of the β-cells. Using this novel approach we revisited basic morphology and used whole-cell patch-clamp to study electrical excitability as well as to assess the modulation of the late steps of the exocy-totic activity of β-cells by cytosolic [Ca2+] changes in control and Kir6.2-/- mice. We found that young Kir6.2-/- mice (2 - 4 weeks old) were hypoglycaemic while aged Kir6.2-/- mice (5 - 60 weeks old) were normo- or even hyper- glycaemic. Membrane ca-pacitance measurements show- ed more efficient Ca2+-secretion coupling in young Kir6.2-/- mice, but this coupling is significantly reduced in older Kir6.2-/- mice. We have found increased exo- cytotic efficacy induced by repetitive trains of depo- larization pulses which may result from higher cyto- solic [Ca2+] due to hyperexcitability in Kir6.2-/- mice. This condition in turn resulted in the reduced β-cell number and func-tion in the following weeks. Detailed assessment of the efficacy of Ca2+ dependent exocyto- sis in β-cell from Kir6.2-/- mice may contribute to our understanding of the pathophysiology of persistent hyperinsulinemia hypoglycemia of infancy (PHHI) and suggest potential alternative therapeutic approaches for PHHI patients.

Share and Cite:

Beaudelaire Tsiaze, E. , Huang, Y. , Bombek, L. , Yang, S. , Jevšek, M. , Seino, S. and Slak Rupnik, M. (2012) Age-dependent changes in the exocytotic efficacy in Kir6.2 ablated mouse pancreatic β-cells. Open Journal of Molecular and Integrative Physiology, 2, 51-60. doi: 10.4236/ojmip.2012.23008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Ashcroft, F.M. and Rorsman, P. (1990) ATP-sensitive K+ channels: A link between B-cell metabolism and insulin secretion. Biochemical Society transactions, 18, 109-111.
[2] Maechler, P., Kennedy, E.D., Sebo, E., Valeva, A., Pozzan, T. and Wollheim, C.B. (1999) Secretagogues modulate the calcium concentration in the endoplasmic reticulum of insulin-secreting cells. Studies in aequorin-expressing intact and permeabilized ins-1 cells. The Journal of Biological Chemistry, 274, 12583-12592 doi:10.1074/jbc.274.18.12583
[3] Ammala, C., Eliasson, L., Bokvist, K., Larsson, O., Ashcroft, F.M. and Rorsman, P. (1993) Exocytosis elicited by action potentials and voltage-clamp calcium currents in individual mouse pancreatic B-cells. The Journal of Physiology, 472, 665-688.
[4] Inagaki, N., Gonoi, T., Clement, J.P., et al. (1995) Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor. Science, 270, 1166-1170. doi:10.1126/science.270.5239.1166
[5] Shyng, S. and Nichols, C.G. (1997) Octameric stoichiometry of the KATP channel complex. The Journal of General Physiology, 110, 655-664. doi:10.1085/jgp.110.6.655
[6] Aguilar-Bryan, L., Nichols, C.G., Wechsler, S.W., et al. (1995) Cloning of the beta cell high-affinity sulfonylurea receptor: A regulator of insulin secretion. Science, 268, 423-426. doi:10.1126/science.7716547
[7] Schwappach, B., Zerangue, N., Jan, Y.N. and Jan, L.Y. (2000) Molecular basis for K(ATP) assembly: Transmembrane interactions mediate association of a K+ channel with an ABC transporter. Neuron, 26, 155-167. doi:10.1016/S0896-6273(00)81146-0
[8] Zerangue, N., Schwappach, B., Jan, Y.N. and Jan, L.Y. (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron, 22, 537-548. doi:10.1016/S0896-6273(00)80708-4
[9] Inagaki, N., Gonoi, T., Clement, J.P., et al. (1996) A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron, 16, 1011-1017. doi:10.1016/S0896-6273(00)80124-5
[10] Speier, S., Yang, S.B., Sroka, K., Rose, T. and Rupnik, M. (2005) KATP-channels in beta-cells in tissue slices are directly modulated by millimolar ATP. Molecular and Cellular Endocrinology, 230, 51-58. doi:10.1016/j.mce.2004.11.002
[11] Ashcroft, F.M. and Rorsman, P. (2004) Molecular defects in insulin secretion in type-2 diabetes. Reviews in Endocrine & Metabolic Disorders, 5, 135-142. doi:10.1023/B:REMD.0000021435.87776.a7
[12] Gloyn, A.L., Reimann, F., Girard, C., et al. (2005) Relapsing diabetes can result from moderately activating mutations in KCNJ11. Human Molecular Genetics, 14, 925-934. doi:10.1093/hmg/ddi086
[13] Koster, J.C., Permutt, M.A. and Nichols, C.G. (2005) Diabetes and insulin secretion: The ATP-sensitive K+ channel (K ATP) connection. Diabetes, 54, 3065-3072. doi:10.2337/diabetes.54.11.3065
[14] Babenko, A.P., Polak, M., Cave, H., et al. (2006) Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. The New England Journal of Medicine, 355, 456-466. doi:10.1056/NEJMoa055068
[15] Huopio, H., Shyng, S.L., Otonkoski, T. and Nichols, C.G. (2002) K(ATP) channels and insulin secretion disorders. American Journal of Physiology—Endocrinology and Metabolism, 283, E207-E216.
[16] Lin, Y.W., Bushman, J.D., Yan, F.F., et al. (2008) Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism. The Journal of Biological Chemistry, 283, 9146-9156. doi:10.1074/jbc.M708798200
[17] Nichols, C.G., Shyng, S.L., Nestorowicz, A., et al. (1996) Adenosine diphosphate as an intracellular regulator of insulin secretion. Science, 272, 1785-1787. doi:10.1126/science.272.5269.1785
[18] Aynsley-Green, A., Hussain, K., Hall, J., et al. (2000) Practical management of hyperinsulinism in infancy. Archives of Disease in Childhood—Fetal and Neonatal Edition, 82, F98-F107. doi:10.1136/fn.82.2.F98
[19] Miki, T., Nagashima, K., Tashiro, F., et al. (1998) Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proceedings of the National Academy of Sciences, 95, 10402-10406. doi:10.1073/pnas.95.18.10402
[20] Remedi, M.S., Rocheleau, J.V., Tong, A., et al. (2006) Hyperinsulinism in mice with heterozygous loss of K(ATP) channels. Diabetologia, 49, 2368-2378. doi:10.1007/s00125-006-0367-4
[21] Seino, S., Iwanaga, T., Nagashima, K. and Miki, T. (2000) Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice. Diabetes, 49, 311-318. doi:10.2337/diabetes.49.3.311
[22] Winarto, A., Miki, T., Seino, S. and Iwanaga, T. (2001) Morphological changes in pancreatic islets of KATP channel-deficient mice: The involvement of KATP channels in the survival of insulin cells and the maintenance of islet architecture. Archives of Histology and Cytology, 64, 59-67. doi:10.1679/aohc.64.59
[23] Speier, S. and Rupnik, M. (2003) A novel approach to in situ characterization of pancreatic beta-cells. Pflugers Archiv: European Journal of Physiology, 446, 553-558.
[24] Dean, P.M. and Matthews, E.K. (1968) Electrical activity in pancreatic islet cells. Nature, 219, 389-390. doi:10.1038/219389a0
[25] Huang, Y.C., Rupnik, M. and Gaisano, H.Y. (2011) Unperturbed islet alpha-cell function examined in mouse pancreas tissue slices. The Journal of Physiology, 589, 395-408. doi:10.1113/jphysiol.2010.200345
[26] Speier, S., Gjinovci, A., Charollais, A., Meda, P. and Rupnik, M. (2007) Cx36-mediated coupling reduces betacell heterogeneity, confines the stimulating glucose concentration range, and affects insulin release kinetics. Diabetes, 56, 1078-1086. doi:10.2337/db06-0232
[27] Gopel, S., Zhang, Q., Eliasson, L., et al. (2004) Capacitance measurements of exocytosis in mouse pancreatic alpha-, betaand delta-cells within intact islets of Langerhans. The Journal of Physiology, 556, 711-726. doi:10.1113/jphysiol.2003.059675
[28] Rose, T., Efendic, S. and Rupnik, M. (2007) Ca2+—Secretion coupling is impaired in diabetic Goto Kakizaki rats. The Journal of General Physiology, 129, 493-508. doi:10.1085/jgp.200609604
[29] Sedej, S., Tsujimoto, T., Zorec, R. and Rupnik, M. (2004) Voltage-activated Ca2+ channels and their role in the endocrine function of the pituitary gland in newborn and adult mice. The Journal of Physiology, 555, 769-782. doi:10.1113/jphysiol.2003.058271
[30] Kanezaki, Y., Obata, T., Matsushima, R., et al. (2004) K(ATP) channel knockout mice crossbred with transgenic mice expressing a dominant-negative form of human insulin receptor have glucose intolerance but not diabetes. Endocrine Journal, 51, 133-144. doi:10.1507/endocrj.51.133
[31] Sedej, S., Rose, T. and Rupnik, M. (2005) cAMP increases Ca2+-dependent exocytosis through both PKA and Epac2 in mouse melanotrophs from pituitary tissue slices. The Journal of Physiology, 567, 799-813. doi:10.1113/jphysiol.2005.090381
[32] Skelin, M. and Rupnik, M. (2011) cAMP increases the sensitivity of exocytosis to Ca2+ primarily through protein kinase A in mouse pancreatic beta cells. Cell Calcium, 49, 89-99. doi:10.1016/j.ceca.2010.12.005
[33] Barg, S., Eliasson, L., Renstrom, E. and Rorsman, P. (2002) A subset of 50 secretory granules in close contact with L-type Ca2+ channels accounts for first-phase insulin secretion in mouse beta-cells. Diabetes, 51, S74-S82. doi:10.2337/diabetes.51.2007.S74

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.