Characterization of tectonins I and II from Physarum polycephalum

Abstract

Features of tectonin I and II expression in Physarum polycephalum cells were examined at both the protein and mRNA levels. Among the five cell cycle stages of P. polycephalum, the plasmodia, microplasmodia, and sclerotia contained both tectonin I and tectonin II; the spores did not contain any of these; and the amoebae contained tectonin I, but not tectonin II. When the mating of amoebae formed plasmodia, the mRNA and protein levels of tectonin II increased with the growth of zygotes. In the early stage of differentiation from plasmodia to spores, the mRNA levels of tectonins I and II decreased. Tectonins I and II were associated with the membrane fraction that precipitated at 200,000 ×g and could be released only by urea treat-ment of this fraction. Furthermore, when the fraction was digested with proteinase K, tectonin II completely disappeared. Immunofluoromicroscopy indicated that tectonins I and II exist in the lamellipodia of plasmo-dia.

Share and Cite:

Furuta, R. , Imai, S. , Kitaoka, Y. , Ubisui, T. and Minami, Y. (2012) Characterization of tectonins I and II from Physarum polycephalum. Advances in Biological Chemistry, 2, 256-261. doi: 10.4236/abc.2012.23032.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Huh, C.G., Aldrich, J., Mottahedeh, J., Kwon, H., Johnson, C. and Marsh, R. (1998) Cloning and characterization of Physarum polycephalum tectonins. Homologues of limulus lectin L-6. Journal of Biological Chemistry, 273, 6565-6574. doi:10.1074/jbc.273.11.6565
[2] Saito, T., Kawabata, S., Hirata, M. and Iwanaga, S. (1995) A novel type of limulus lectin-L6. Purification, primary structure, and antibacterial activity. Journal of Biological Chemistry, 270, 14493-14499.
[3] Fulop, V. and Jones, D.T. (1999) β propellers: Structural rigidity and functional diversity. Current Opinion in Structural Biology, 9, 715-721. doi:10.1016/S0959-440X(99)00035-4
[4] Jawad, Z. and Paoli, M. (2002) Novel sequences propel familiar folds. Structure, 10, 447-454. doi:10.1016/S0969-2126(02)00750-5
[5] Smith, T.F., Gaitatzes, C., Saxena, K. and Neer, E.J. (1999) The WD repeat: A common architecture for diverse functions. Trends in Bio-chemical Sciences, 24, 181- 185. doi:10.1016/S0968-0004(99)01384-5
[6] Chen, S.C., Yen, C.H., Yeh, M.S., Huang, C.J. and Liu, T.Y. (2001) Biochemical properties and cDNA cloning of two new lectins from the plasma of Tachypleus tridentatus: Tachypleus plasma lectin 1 and 2. Journal of Biological Chemistry, 276, 9631-9639. doi:10.1074/jbc.M008414200
[7] Schroder, H.C., Ushijima, H., Krasko, A., Gamulin, V., Thakur, N.L., Diehl-Seifert, B., Muller, I.M. and Muller, W.E.G. (2003) Emergence and disappearance of an immune molecule, an antimicrobial lectin, in basal meta-zoan: A techylectin-related protein in the sponge Sub- erites domuncula. Journal of Biological Chemistry, 278, 32810-32817. doi:10.1074/jbc.M304116200
[8] Low, D.H.P., Ang, Z., Yuan, Q., Frecer, V., Ho, B., Chen, J. and Ding, J.L. (2009) A novel human tectonin protein with multiva-lent-propeller folds interacts with ficolin and binds bacterial LPS. PLoS ONE, 4, e6260. doi:10.1371/journal.pone.0006260
[9] Low, D.H.P., Frecer, V., Saux, A.L., Srinivasan, G.A., Ho, B., Chen, J. and Ding, J.L. (2010) Molecular interfaces of the galactose-binding protein tectonin domains in host-pathogen interaction. Journal of Biological Chemistry, 285, 9898-9907. doi:10.1074/jbc.M109.059774
[10] Ogawa, M., Yoshikawa, Y., Kobayashi, T., Mimuro, H., Fukumatsu, M., Kiga, K., Piao, Z., Ashida, H., Yoshida, M., Kakuta, S., Koyama, T., Goto, Y., Nagatake, T., Nagai, S., Kiyono, H., Kawalec, M., Reichhart, J.M. and Sasakawa, C. (2011) A tecpr1-dependent selective auto- phagy pathway targets bacterial pathogens. Cell Host Microbe, 9, 376-389. doi:10.1016/j.chom.2011.04.010
[11] Montfort, W., Villafranc, J.E., Monzingo, A.F., Ernst, S.R., Katzin, B., Rutenber, E., Xuong, N.H., Hamlin, R. and Rpbertus, J.D. (1987) The three-dimensional structure of ricin at 2.8 A. Journal of Biological Chemistry, 262, 5398-5403.
[12] Dee, J. (1966) Multi-ple alleles and other factors affecting plasmodium formation in the true slime mold Physarum polycephalum Schw. The Journal of Protozoology, 13, 610-616.
[13] Dee, J. and Anderson, R.W. (1985) The effect of ploidy on the stability of plasmodial heterokaryons in Physarum polycephalum. Journal of General Microbiology, 131, 1167-1179.
[14] Daniel, J.W. and Baldwin, H.H. (1964) Methods of cul- ture for plasmodial myxomycetes. In: Prescott, D.M., Ed., Methods in Cell Physiology, Academic Press, London, 9-40.
[15] Kohama, K., Ishikawa, R. and Ishigami, M. (1994) Lar- ge-scale culture of Physarum: A sim-ple method for growing several hundred grams of plasmodia. In: Celis, J.E., Ed., Cell Biology: A Laboratory Hand-Book, Academic Press, London, 452-455.
[16] Daniel, J.W. and Rush, H.P. (1962) Methods for inducing sporulation of pure cultures of the myxomycete Physa- rum polycephalum. Journal of Bacteriology, 83, 234-240.
[17] Harlow, E. and Lane, D. (1988) Storing and purifying antibodies. Cold Spring Habor, New York, 283-318.
[18] Melera, P.W. and Rusch, H.P. (1973) A characterization of ribonucleic acid in the myxomycete Physarum police-phalum. Experimental Cell Research, 82, 197-209. doi:10.1016/0014-4827(73)90262-0
[19] Hayase, M., Maekawa, A., Yubisui, T. and Minami, Y. (2008) Properities, intracellular localization, and stage-specific expression of membrane-bound β-glucosidase, BglM1, from Physarum polycephalum. The International Journal of Biochemistry & Cell Biology, 40, 2141-2150. doi:10.1016/j.biocel.2008.02.019

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.