Heavy Metals Removal from Swine Wastewater Using Constructed Wetlands with Horizontal Sub-Surface Flow

Abstract

The removal efficiency of Cu and Zn from swine wastewater was evaluated as effected by three variables: the hydraulic retention time (HRT) (24, 48, 72 and 96 hours), two different plant species (Typha domingensis Pers. and Eleocharis cellulosa) and two different sizes of filter media (5 and 15 mm) using a horizontal sub-surface flow constructed wetland. From the results, a significant difference was observed in the removal efficiency of Cu and Zn with respect to different hydraulic retention times. The best results were obtained in the HRT of 96 hours for Zn where 96% removal of Zn with Typha domingensis Pers. specie with gravel of 15 mm (experimental unit 6) was achieved. For Cu, at 72 hours of HRT, the efficiency was nearly 100% in five of the six study units (1, 2, 3, 5 and 6). In contrast, in experimental unit 4 with gravel of 15 mm and without plants, only 86% Cu removal was achieved.

Share and Cite:

J. Cortes-Esquivel, G. Giácoman-Vallejos, I. Barceló-Quintal, R. Méndez-Novelo and M. Ponce-Caballero, "Heavy Metals Removal from Swine Wastewater Using Constructed Wetlands with Horizontal Sub-Surface Flow," Journal of Environmental Protection, Vol. 3 No. 8A, 2012, pp. 871-877. doi: 10.4236/jep.2012.328102.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Rodríguez and L. del Moral, “Perspectivas del Sector Porcícola Mexicano para 2010: Recuperación de los Efectos de la Crisis Económica de la Influencia (A) H1/N1,” Revista Trimestral de Análisis de Coyuntura Económica, Vol. 3, No. 2, pp. 21-23, 2010.
[2] SAGARPA, “Anuario Estadístico de la Producción Pecuaria de los Estados Unidos Mexicanos, Servicio de Información y Estadística Agroalimentaria y Pesquera,” 2009. http://www.siap.gob.mx/index.php?option=com_content&view=article&id=261&Itemid=429
[3] R. Méndez, E. Castillo, E. Vázquez, O. Brice?o, V. Coronado, R. Pat and P. Garrido “Estimación del Poten- cial Contaminante de las Granjas Porcinas y Avícolas del Estado de Yucatán,” Ingeniería, Vol. 13, No. 2, 2009, pp. 13-21.
[4] A. Drucker, R. Semerena, V. González and S. Rueda, “La Industria Porcina en Yucatán: Un Análisis de la Genera- ción de Aguas Residuales,” Revista Latinoamericana de Economía, Vol. 34, No. 135, 2003, pp. 105-124.
[5] V. M. Alcocer, A. F. Castellanos, F. Herrera, L. A. Chel and D. A. Betancur, “Detección de Metales Pesados y Dicloro Difenil Tricloro Etano (DDT) en Músculos y órganos de Bovinos en Yucatán,” Técnica Pecuaria de México, Vol. 45, No. 2, 2007, pp. 237-247.
[6] I. Covarrubias, F. Gómez and C. Robles, “Factibilidad Técnico-Económica para el Aprovechamiento Integral de Sólidos Recuperados de Estiércol de Cerdo Fermentados en la Nutrición del Cerdo. Estiércol de Cerdo: Un Recur- so Renovable,” In: L. Kato, Ed., La Producción Porcícola en México: Contribución al Desarrollo de una Visión Integral, Universidad Autónoma Metropolitana, México, 1995, pp. 21-41.
[7] R. Pérez and J. Pacheco, “Vulnerabilidad del Agua Subterránea a la Contaminación de Nitratos en el Estado de Yucatán,” Ingeniería, Vol. 8, No. 1, 2004, pp. 33-42.
[8] J. Paat, “Dise?o de un Sistema de Lagunas de Oxidación de las Aguas Residuales Porcícolas de Hampolol, Cam- peche,” Tesis de Maestría, Universidad Autónoma de Campeche, México, 2002.
[9] X. Domènech and J. Peral, “Química Ambiental de Sistemas Terrestres,” Reverté, Barcelona, Espa?a, 2006.
[10] J. Vymazal, “The Use of Constructed Wetlands with Hori- zontal Sub-Surface Flow for Various Types of Wastewater,” Ecological Engineering, Vol. 35, No. 1, 2009, pp. 1- 17. doi:10.1016/j.ecoleng.2008.08.016
[11] J. Vymazal, “Removal of Nutrients in Various Types of Constructed Wetlands,” Science of the Total Environment, Vol. 380, No. 1-3, 2007, pp. 48-65. doi:10.1016/j.scitotenv.2006.09.014
[12] C. H. Sim, M. K. Yusoff, B. Shutes, S. C. Ho and M. Mansor, “Nutrient Removal in a Pilot and Full Scale Constructed Wetland, Putrajaya City, Malaysia,” Journal of Environmental Management, Vol. 88, No. 2, 2008, pp. 307-317. doi:10.1016/j.jenvman.2007.03.011
[13] J. Vymazal and L. Kr?pfelová, “Removal of Organics in Constructed Wetlands with Horizontal Sub-Surface Flow: A Review of the Field Experience,” Science of the Total Environment, Vol. 407, No. 13, 2009, pp. 3911-3922.doi:10.1016/j.scitotenv.2008.08.032
[14] K. Sleytr, A. Tietz, G. Langergraber and R. Raimund, “Investigation of Bacterial Removal during the Filtration Process in Constructed Wetlands,” Science of the Total Environment, Vol. 380, No. 1-3, 2007, pp. 173-180.doi:10.1016/j.scitotenv.2007.03.001
[15] J. Liu, Y. Dong, H. Xu, D. Wang and J. Xu, “Accumulation of Cd, Pb and Zn by 19 Wetland Plant Species in Constructed Wetland,” Journal of Hazardous Materials, Vol. 147, No. 3, 2007, pp. 947-953. doi:10.1016/j.jhazmat.2007.01.125
[16] J. Vymazal and L. Kr?pfelová, “Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow,” Springer, Czech Republic, 2008.doi:10.1007/978-1-4020-8580-2
[17] P. E. Lim, K. Y. Mak, N. Mohamed and A. M. Noor, “Removal and Speciation of Heavy Metals along the Treatment of Wastewater in Subsurface-Flow Constructed Wetlands,” Water Science and Technology, Vol. 48, No. 5, 2003, pp. 307-313.
[18] L. Kr?pfelová, J. Vymazal, J. ?tvehla and J. ?tíchová, “Removal of Trace Elements in Three Horizontal Sub- Surface Flow Constructed Wetlands in the Czech Republic,” Environmental Pollution, Vol. 157, No. 4, 2009, pp. 1186-1194. doi:10.1016/j.envpol.2008.12.003
[19] A. S. Sheoran and V. Sheoran, “Heavy Metal Removal Mechanism of Acid Mine Drainage in Wetlands: A Critical Review,” Minerals Engineering, Vol. 19, No. 2, 2006, pp. 105-116. doi:10.1016/j.mineng.2005.08.006
[20] D. J. Walker and S. Hurl, “The Reduction of Heavy Metals in a Stormwater Wetland,” Ecological Engineering, Vol. 18, No. 4, 2002, pp. 407-414. doi:10.1016/S0925-8574(01)00101-X
[21] R. P. Gambrell, “Trace Metals in Wetland: A Review,” Journal of Environmental Quality, Vol. 23, No. 5, 1994, pp. 883-881. doi:10.2134/jeq1994.235883x
[22] U. Stottmeister, A. Wie?ner, P. Kuschk, U. Kappelmeyer, M. K?stner, O. Bederski, R. A. Müller and H. Moormann, “Effects of Plants and Microorganisms in Constructed Wetlands for Wastewater Treatment,” Biotechnology Advances, Vol. 22, No. 1-2, 2003, pp. 93-117.doi:10.1016/j.biotechadv.2003.08.010
[23] APHA, “Standards Methods for the Examination of Water and Wastewater,” 21st Edition, American Public Health Association, Washington DC, 2005.
[24] D. C. Montgomery, “Dise?o y Análisis de Experimento,” Limusa, México, 2008.
[25] SEMARNAT, “Norma Oficial Mexicana NOM-001- ECOL-1996, Que Establece los Límites Máximos Permi- sibles de Contaminantes en las Descargas de Aguas Resi- duales en Aguas y Bienes Naciones,” Secretaría de Medio Ambiente, Recursos Naturales y Pesca, Diario Oficial de la Federación, 1996.
[26] M. A. Maine, N. Su?e, H. Hadad, G. Sánchez and C. Bonetto, “Nutrient and Metal Removal in a Constructed Wetland for Wastewater Treatment from a Metallurgic Industry,” Ecological Engineering, Vol. 26, No. 4, 2006, pp. 341-347. doi:10.1016/j.ecoleng.2005.12.004
[27] E. Lesage, D. P. L. Rousseau, E. Meers, F. M. G. Tack and N. De Pauw, “Accumulation of Metals in a Horizontal Subsurface Flow Constructed Wetland Treating Domestic Wastewater in Flanders, Belgium,” Science of the Total Environment, Vol. 380, No. 1-3, 2007, pp. 102-115.doi:10.1016/j.scitotenv.2006.10.055
[28] T. Y. Yeh, C. C. Chou and C. T. Pan, “Heavy Metal Removal within Pilot-Scale Constructed Wetlands Receiving River Water Contaminated by Confined Swine Operations,” Desalination, Vol. 249, No. 1, 2009, pp. 368- 373. doi:10.1016/j.desal.2008.11.025
[29] F. Tapia, G. Giácoman, J. Herrera, C. Quintal, J. García and J. Puigagut, “Treatment of Swine Wastewater with Subsurface-Flow Constructed Wetlands in Yucatán, Me- xico: Influence of Plant Species and Contact Time,” Water SA, Vol. 35, No. 3, 2009, pp. 355-342.
[30] Q. Xian, L. Hu, H. Chen, Z. Chang and H. Zou, “Removal of Nutrients and Veterinary Antibiotics from Swine Wastewater by a Constructed Macrophyte Floating Bed System,” Journal of Environmental Management, Vol. 91, No. 12, 2010, pp. 2657-2661.doi:10.1016/j.jenvman.2010.07.036

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.