Laser Surface Annealing of Plasma Sprayed Coatings

Abstract

Laser surface annealing provides a rapid and efficient means for surface alloying and modification of ceramic materials. In this study, Alumina-13% Titania coatings were sprayed with a water-stabilized plasma spray gun. The coated surface was treated by Excimer laser having a wavelength of 248 nm and pulse duration of 24 ns. The surface structure of the treated coating was examined by field emission scanning electron microscope and X-ray diffraction (XRD). A detailed analysis of the effects of various laser parameters including laser energy density (fluence), pulse repetition rate (PRR), and number of pulses on the morphology and the microstructure of the coatings are presented.

Share and Cite:

A. Ibrahim and Y. Hung, "Laser Surface Annealing of Plasma Sprayed Coatings," Journal of Surface Engineered Materials and Advanced Technology, Vol. 2 No. 3A, 2012, pp. 215-220. doi: 10.4236/jsemat.2012.223033.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. Pawlowski, “The Science and Engineering of Thermal Spray Coatings,” Wiley, New York, 1995.
[2] R. McPherson, “A Review of Microstructure and Properties of PS Ceramic Coatings,” Surface and Coatings Technology, Vol. 39/40, 1989, pp. 173-180. doi:10.1016/0257-8972(89)90052-2
[3] D. Goberma, L. Shaw, E. Jordan and M. Gell, “Micro-structure Development of Al2O3-13wt% TiO2 Plasma Sprayed Coatings Derived from nanocrystalline Powders,” Acta Materialia, Vol. 50, No. 5, 2002, pp. 1141-1152. doi:10.1016/S1359-6454(01)00414-1
[4] E. H. Jordan, M. Gell, Y. H. Sohn, D. Goberman, L. Shaw, S. Jiang, M. Wang, T. D. Xiao, Y. Wang and Y. P. Strutt, “Fabrication and Evaluation of Plasma Sprayed Nanostructured Alumina-Titania Coatings with Superior Properties,” Materials Science and Engineering A, Vol. 301, No. 1, 2001, pp. 80-89. doi:10.1016/S0921-5093(00)01382-4
[5] A. Ibrahim, H. Salem and C. Berndt, “Characterization of Nanostructured and Conventional Alumina-13wt% Titania Coatings,” International Thermal Spray Conference, Maastricht, 2-4 June 2008.
[6] M. Gell, E. H. Jordan, Y. H. Sohn, D. Goberman, L. Shaw and T. D. Xiao, “Development and Implemenation of Plasma Sprayed Nanostructured Ceramic Coatings,” Surface and Coatings Technology, Vol. 146-147, 2001, pp. 48-54. doi:10.1016/S0257-8972(01)01470-0
[7] W. Meidong and L. Shaw, “Effects of the Powder Manufacturing Method on Microstructure and Wear Perform- ance of Plasma Sprayed Alu-mina-Titania Coatings,” Surface & Coatings Technology, Vol. 202, No. 1, 2007, pp. 34-44. doi:10.1016/j.surfcoat.2007.04.057
[8] J. R. Davis, “Hand-book of Thermal Spray Technology,” ASM International, 2004.
[9] R. S. Lima, A. Kucuk, U. Senturk and C. C. Berndt, “Evaluation of Microhardness and Elastic Modulus of Thermally Sprayed Nanostructured Zirconia Coatings,” Journal of Thermal Spray Technology, Vol. 135, No. 1, 2001, pp. 179-180.
[10] E. H. Jordan, M. Gell, Y. H. Sohn, D. Goberman, L. Shaw, S. Jiang, et al., “Fabrication and Evaluation of Plasma Sprayed Nanostructured Alumina-Titania Coatings with superior Properties,” Materials Science and Engineering: A, Vol. 301, No. 1, 2001, pp. 80-89. doi:10.1016/S0921-5093(00)01382-4
[11] R. S. Lima, A. Kucuk and C. C. Berndt, “Bimodal Distribution of Mechanical Properties on Plasma Sprayed Nanostructured Partially Stabilized Zirconia,” Materials Science and Engineering: A, Vol. 327, No. 2, 1997, pp. 224-232.
[12] G. Antou, G. Coddet and F. Machi, “Modification of Ceramic Thermal Spray Deposit Microstructures Implementing in Situ Laser Remelting,” Surface and Coatings Technology, Vol. 172, No. 2-3, 2003, pp. 279-290. doi:10.1016/S0257-8972(03)00431-6
[13] J. Iwaszko, “Surface Remelting Treatment of Plasma- Sprayed Al2O3 + 13 wt% TiO2 Coatings,” Surface & Coatings Technology, Vol. 201, No. 6, 2006, pp. 3443-3451. doi:10.1016/S0257-8972(03)00431-6
[14] L. Bradley, L. Li and F. H. Stott, “Characteristics of the Microstructures of Alu-mina-Based Refractory Materials Treated with CO2 and Diode Lasers,” Applied Surface Science, Vol. 138-139, 1999, pp. 233-239.
[15] J. Brannon, “Excimer Laser Ablation and Etch-ing,” America Vacuum Society, New York, 1993.
[16] M. J. Aziz, “Nonequilibrium Interface Kinetics during Rapid Solidification,” Materials Science and Engineering: A, Vol. 178, No. 1-2, 1994, pp. 167-170. doi:10.1016/0921-5093(94)90537-1
[17] E. Hontzopoulos and E. Damigos, “Excimer Laser Surface Treatment of Bulk Ceramics,” Applied Physics A: Materials Science & Processing, Vol. 52, No. 6, 1991, pp. 421-424. doi:10.1007/BF00323653
[18] C.-K. Lin, C. C. Berndt, S.-H. Leigh and K. Murakami, “Acoustic Emission Studies of Alumi-na-13% Titania Free- Standing Forms during Four-Point Bend Tests,” Journal of the American Ceramic Society, Vol. 80, No. 9, 1997, pp. 2382-2394. doi:10.1111/j.1151-2916.1997.tb03130.x
[19] A. Kucuk, R. S. Lima and C. C. Berndt, “Influence of Plasma Spray Parameters on Spray Efficiency of Yttria Partially Stabilized Zirconia Coatings II: Physical Characteristics,” The American Ceramic Society, Submitted, 2000.
[20] Jervis. T. R, Nastasi. M, Hirvonen. J.P, Advances in excimer laser surface processing of materials, IEEE/LEOS 1996 Summer Topical Meetings.
[21] H. Li, S. Costil, V. Barnier and C. Coddet, “Surface Modifications Induced by Nanosecond Pulsed Laser Irradiation of Metallic Substrates,” Surface & Coatings Technology, Vol. 201, No. 3-4, 2006, pp. 1383-1392. doi:10.1016/j.surfcoat.2006.02.012

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.