Review of Recent Literature on Static Analyses of Composite Shells: 2000-2010

Abstract

Laminated composite shells are frequently used in various engineering applications including aerospace, mechanical, marine, and automotive engineering. This article reviews the recent literature on the static analysis of composite shells. It follows up with the previous work published by the first author [1-4] and it is a continuation of another recent article that focused on the dynamics of composite shells [3]. This paper reviews most of the research done in recent years (2000-2010) on the static and buckling behavior (including postbuckling) of composite shells. This review is conducted with an emphasis on the analysis performed (static, buckling, postbuckling, and others), complicating effects in both material (e.g. piezoelectric) and structure (e.g. stiffened shells), and the various shell geometries (cylindrical, conical, spherical and others). Attention is also given to the theory being applied (thin, thick, 3D, nonlinear …). However, more details regarding the theories have been described in previous work [1,3].

Share and Cite:

M. Qatu, E. Asadi and W. Wang, "Review of Recent Literature on Static Analyses of Composite Shells: 2000-2010," Open Journal of Composite Materials, Vol. 2 No. 3, 2012, pp. 61-86. doi: 10.4236/ojcm.2012.23009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. S. Qatu, “Vibration of Laminated Shells and Plates,” Elsevier, Amsterdam, 2004.
[2] M. S. Qatu, “Recent Research Advances in the Dynamic Behavior of Shells: 1989-2000, Part 1: Laminated Composite Shells,” Applied Mechanics Reviews, Vol. 55, No. 4, 2002, pp. 325-350. doi:10.1115/1.1483079
[3] M. S. Qatu, R. W. Sullivan and W. Wang, “Recent Research Advances in the Dynamic Behavior of Composite Shells: 2000-2009,” Composite Structures, Vol. 93, No. 1, 2010, pp. 14-31. doi:10.1016/j.compstruct.2010.05.014
[4] M. S. Qatu, “Accurate Theory for Laminated Composite Deep Thick Shells,” International Journal of Solids and Structures, Vol. 36, No. 19, 1999, pp. 2917-2941. doi:10.1016/S0020-7683(98)00134-6
[5] P. K. Kapania, “Review on the Analysis of Laminated Shells,” Journal of Pressure Vessel Technology, Vol. 111, 1989, pp. 88-96.
[6] A. K. Noor and W. S. Burton, “Assessment of Computational Models for Multilayered Composite Shells,” Applied Mechanics Reviews, Vol. 43, No. 4, 1990, pp. 67- 97.
[7] A. K. Noor and W. S. Burton, “Computational Models for High-Temperature Multilayered Composite Plates and Shells,” Applied Mechanics Reviews, Vol. 45, No. 10, 1992, pp. 419-446. doi:10.1115/1.3119742
[8] A. K. Noor, W. S. Burton and J. M. Peters, “Assessment of Computational Models for Multilayered Composite Cylinders,” International Journal of Solids and Structures, Vol 27, No. 10, 1991, pp. 1269-1286. doi:10.1016/0020-7683(91)90162-9
[9] K. P. Soldatos, “Mechanics of Cylindrical Shells with Non-Circular Cross-Section,” Applied Mechanics Reviews, Vol. 52, No. 8, 1999, pp. 237-274. doi:10.1115/1.3098937
[10] A. K. Noor, W. S. Burton and C. W. Bert, “Computational Models for Sandwich Panels and Shells,” Applied Mechanics Reviews, Vol. 49, No. 3, 1996, pp. 155-200. doi:10.1115/1.3101923
[11] A. K. Noor and S. L. Venneri, “High-Performance Computing for Flight Vehicles,” Proceeding of the Symposium of Computer Systems Science and Engineering, Washington DC, 7-9 December 1992, pp. 1-4.
[12] E. Carrera, “Historical Review of Zig-Zag Theories for Multilayered Plates and Shells,” Applied Mechanics Reviews, Vol. 56, No. 3, 2003, pp. 287-309. doi:10.1115/1.1557614
[13] E. Carrera, “Theories and Finite Elements for Multilayered, Anisotropic, Composite Plates and Shells,” Journal of Archives of Computational Methods in Engineering, Vol. 9, No. 2, 2002, pp. 87-140. doi:10.1007/BF02736649
[14] J. N. Reddy, “Mechanics of Laminated Composite Plates and Shells: Theory and Analysis,” 2nd Edition, CRC Press, Boca Raton, 2003.
[15] J. Ye, “Laminated Composite Plates and Shells: 3D Modeling,” Springer, London, 2003. doi:10.1007/978-1-4471-0095-9
[16] C. Y. Lee, “Geometrically Correct Laminated Composite Shell Modeling,” VDM Verlag, 2008.
[17] H. S. Shen, “Functionally Graded Materials: Nonlinear Analysis of Plates and Shells,” CRC Press, Boca Raton, 2009. doi:10.1201/9781420092578
[18] H. Y. Sheng and J. Q. Ye, “A Three-Dimensional State Space Finite Element Solution for Laminated Composite Cylindrical Shells,” Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 22-24, 2003, pp. 2441-2459. doi:10.1016/S0045-7825(03)00265-2
[19] C. P. Wu and J. Y. Lo, “Three-Dimensional Elasticity Solutions of Laminated Annular Spherical Shells,” Journal of Engineering Mechanics, Vol. 126, No. 8, 2000, pp. 882-885. doi:10.1061/(ASCE)0733-9399(2000)126:8(882)
[20] X. Wang and Z. Zhong, “Three-Dimensional Solution of Smart Laminated Anisotropic Circular Cylindrical Shells with Imperfect Bonding,” International Journal of Solids and Structures, Vol. 40, No. 22, 2003, pp. 5901-5921. doi:10.1016/S0020-7683(03)00389-5
[21] Z. M. Li and H. S. Shen, “Postbuckling Analysis of Three-Dimensional Textile Composite Cylindrical Shells under Axial Compression in Thermal Environments,” Composites Science and Technology, Vol. 68, No. 3-4, 2008, pp. 872-879. doi:10.1016/j.compscitech.2007.08.009
[22] H. Santos, C. M. M. Soares, C. A. M. Soares and J. N. Reddy, “A Finite Element Model for the Analysis of 3D Axisymmetric Laminated Shells with Piezoelectric Sensors and Actuators,” Composite Structures, Vol. 75, No. 1-4, 2006, pp. 170-178. doi:10.1016/j.compstruct.2006.04.008
[23] H. Santos, C. M. M. Soares, C. A. M. Soares and J. N. Reddy, “A Finite Element Model for the Analysis of 3D Axisymmetric Laminated Shells with Piezoelectric Sensors and Actuators: Bending and Free Vibrations,” Computers & Structures, Vol. 86, No. 9, 2008, pp. 940-947. doi:10.1016/j.compstruc.2007.04.013
[24] W. Sprenger, F. Gruttmann and W. Wagner, “Delamination Growth Analysis in Laminated Structures with Continuum-Based 3D-Shell Elements and a Viscoplastic Softening Model,” Computer Methods in Applied Mechanics and Engineering, Vol. 185, No. 2-4, 2000, pp. 123-139. doi:10.1016/S0045-7825(99)00255-8
[25] Z. M. Li and H. S. Shen, “Postbuckling Analysis of 3D Braided Composite Cylindrical Shells under Torsion in Thermal Environments,” Composite Structures, Vol. 87, No. 3, 2009, pp. 242-256. doi:10.1016/j.compstruct.2008.01.013
[26] Z. M. Li and H. S. Shen, “Postbuckling of 3D Braided Composite Cylindrical Shells under Combined External Pressure and Axial Compression in Thermal Environments,” International Journal of Mechanical Sciences, Vol. 50, No. 4, 2008, pp. 719-731. doi:10.1016/j.ijmecsci.2007.12.001
[27] A. Alibeigloo and V. Nouri, “Static Analysis of Functionally Graded Cylindrical Shell with Piezoelectric Layers Using Differential Quadrature Method,” Composite Structures, Vol. 92, No. 8, 2010, pp. 1775-1785. doi:10.1016/j.compstruct.2010.02.004
[28] C. Fagiano, M. M. Abdalla and Z. Gürdal, “Interlaminar Stress Recovery of Multilayer Composite Shell Structures for Three-Dimensional Finite Elements,” Finite Elements in Analysis and Design, Vol. 46, No. 12, 2010, pp. 1122- 1130. doi:10.1016/j.finel.2010.08.004
[29] A. Nosier and M. Ruhi, “Three Dimensional Analysis of Laminated Cylindrical Panels with Piezoelectric Layers,” IJE Transactions B: Applications, Vol. 19, No. 1, 2006, pp. 61-72.
[30] M. Ruhi, A. Angoshtari and R. Naghdabadi, “Thermoelastic Analysis of Thick-Walled Finite-Length Cylinders of Functionally Graded Materials,” Journal of Thermal Stresses, Vol. 28, No. 4, 2005, pp. 391-408. doi:10.1080/01495730590916623
[31] E. Asadi, W. Wang and M. S. Qatu, “Static and Free Vibration Analyses of Deep Thick Laminated Composite Shells Using 3D and Various Shear Deformation Theories,” Composite Structures, Vol. 94, No. 2, 2012, pp. 494-500. doi:10.1016/j.compstruct.2011.08.011
[32] R. A. Chaudhuri, “A Nonlinear Zigzag Theory for Finite Element Analysis of Highly Shear-Deformable Laminated Anisotropic Shells,” Composite Structures, Vol. 85, No. 4, 2008, pp. 350-359. doi:10.1016/j.compstruct.2007.11.002
[33] I. Krejaa and R. Schmidt, “Large Rotations in First-Order Shear Deformation FE Analysis of Laminated Shells,” International Journal of Non-Linear Mechanics, Vol. 41, No. 1, 2006, pp. 101-123. doi:10.1016/j.ijnonlinmec.2005.06.009
[34] Z. M. Li and Z. Q. Lin, “Non-linear Buckling and Postbuckling of Shear Deformable Anisotropic Laminated Cylindrical Shell Subjected to Varying External Pressure Loads,” Composite Structures, Vol. 92, No. 2, 2010, pp. 553-567. doi:10.1016/j.compstruct.2009.08.048
[35] J. Sori? and T. Jarak, “Mixed Meshless Formulation for Analysis of Shell-Like Structures,” Computer Methods in Applied Mechanics and Engineering, Vol. 199, No. 17-20, 2010, pp. 1153-1164. doi:10.1016/j.cma.2009.12.007
[36] H. S. Shen, “Postbuckling of Shear Deformable Cross-Ply Laminated Cylindrical Shells under Combined External Pressure and Axial Compression,” International Journal of Mechanical Sciences, Vol. 43, No. 11, 2001, pp. 2493- 2523. doi:10.1016/S0020-7403(01)00058-3
[37] H. S. Shen, “Postbuckling of Shear Deformable Laminated Cylindrical Shells,” Journal of Engineering Mechanics, Vol. 128, No. 3, 2002, pp. 296-307. doi:10.1061/(ASCE)0733-9399(2002)128:3(296)
[38] V. G. Piskunov, V. E. Verijenko, S. Adali, P. Y. Tabakov, V. K. Prisyazknyouk and S. J. Buryhin, “Rational transverse Shear Deformation Higher Order Theory of Anisotropic Laminated Plates and Shells,” International Journal of Solids and Structures, Vol. 38, No. 36-37, 2001, pp. 6491-6523. doi:10.1016/S0020-7683(01)00041-5
[39] R. Iozzi and P. Gaudenzi, “Effective Shear Deformable Shell Elements for Adaptive Laminated Structures,” Jour- nal of Intelligent Material Systems and Structures, Vol. 12, No. 6, 2001, pp. 415-421. doi:10.1106/104538902022722
[40] S. C. Han, A. Tabiei and W. T. Park, “Geometrically Nonlinear Analysis Of Laminated Composite Thin Shells Using a Modified First-Order Shear Deformable Element-Based Lagrangian Shell Element,” Composite Struc- tures, Vol. 82, No. 3, 2008, pp. 465-474. doi:10.1016/j.compstruct.2007.01.027
[41] Z. M. Li, “Postbuckling of a Shear-Deformable Anisotropic Laminated Cylindrical Shell under External Pressure in Thermal Environments,” Mechanics of Composite Materials, Vol. 43, No. 6, 2007, pp. 535-560. doi:10.1007/s11029-007-0050-y
[42] A. M. Zenkour, “Stress Analysis of Axisymmetric Shear Deformable Cross-Ply Laminated Circular Cylindrical Shells,” Journal of Engineering Mathematics, Vol. 40, No. 4, 2001, pp. 315-332. doi:10.1023/A:1017500411490
[43] H. S. Shen, “The Effects of Hygrothermal Conditions on the Postbuckling of Shear Deformable Laminated Cylindrical Shells,” International Journal of Solids and Structures, Vol. 38, No. 36-37, 2001, pp. 6357-6380. doi:10.1016/S0020-7683(01)00123-8
[44] H. S. Shen and Q. S. Li, “Thermomechanical Postbuckling of Shear Deformable Laminated Cylindrical Shells with Local Geometric Imperfections,” International Jour- nal of Solids and Structures, Vol. 39, No. 17, 2002, pp. 4525-4542. doi:10.1016/S0020-7683(02)00351-7
[45] M. Balah and H. N. Al-Ghamedy, “Third Order Shear Deformation Model for Laminated Shells with Finite Rotations: Formulation and Consistent Linearization,” Acta Mech Sinica, Vol. 20, No. 5, 2004, pp. 484-498. doi:10.1007/BF02484271
[46] A. J. M. Ferreira, “On the Shear-Deformation Theories for the Analysis of Concrete Shells Reinforced with External Composite Laminates,” Strength of Materials, Vol. 35, No. 2, 2003, pp. 128-135. doi:10.1023/A:1023706410615
[47] W. Zhen and C. Wanji, “A Global-Local Higher Order Theory for Multilayered Shells and the Analysis of Laminated Cylindrical Shell Panels,” Composite Structures, Vol. 84, No. 4, 2008, pp. 350-361. doi:10.1016/j.compstruct.2007.10.006
[48] R. K. Khare, T. Kant and A. K. Garg, “Closed-Form Thermo-Mechanical Solutions of Higher-Order Theories of Cross-Ply Laminated Shallow Shells,” Composite Struc- tures, Vol. 59, No. 3, 2003, pp. 313-340. doi:10.1016/S0263-8223(02)00245-3
[49] R. K. Khare and V. Rode, “Higher-Order Closed-Form Solutions for Thick Laminated Sandwich Shells,” Journal of Sandwich Structures and Materials, Vol. 7, No. 4, 2005, pp. 335-358. doi:10.1177/1099636205050260
[50] A. M. A. Ferreira, C. M. C. Roque and R. M. N. Jorge, “Modeling Cross-Ply Laminated Elastic Shells by a Higher-Order Theory and Multiquadrics,” Computers & Structures, Vol. 84, No. 19-20, 2006, pp. 1288-1299. doi:10.1016/j.compstruc.2006.01.021
[51] F. Alijani and M. M. Aghdam, “A Semi-Analytical Solution for Stress Analysis of Moderately Thick Laminated Cylindrical Panels with Various Boundary Conditions,” Composite Structures, Vol. 89, No. 4, 2009, pp. 543-550. doi:10.1016/j.compstruct.2008.11.008
[52] I. F. Pinto Correia, C. M. Mota Soares, C. A. Mota Soares and J. Herskovits, “Analysis of Laminated Conical Shell Structures Using Higher Order Models,” Composite Structures, Vol. 62, No. 3-4, 2003, pp. 383-390. doi:10.1016/j.compstruct.2003.09.009
[53] H. Matsunaga, “Thermal Buckling of Cross-Ply Laminated Composite Shallow Shells According to a Global Higher-Order Deformation Theory,” Composite Structures, Vol. 81, No. 2, 2007, pp. 210-221. doi:10.1016/j.compstruct.2006.08.008
[54] J. Oh and M. Cho, “Higher Order Zig-Zag Theory for Smart Composite Shells under Mechanical-Thermo-Elec- tric Loading,” International Journal of Solids and Structures, Vol. 44, No. 1, 2007, pp. 100-127. doi:10.1016/j.ijsolstr.2006.04.017
[55] M. Yaghoubshahi, E. Asadi and S. J. Fariborz, “A Higher-Order Shell Model Applied to Shells with Mixed Boundary Conditions,” Journal of Mechanical Engineering Science, Vol. 225, No. 2, 2011, pp. 292-303.
[56] E. Asadi, S. J. Fariborz, “Free Vibration of Composite Plates with Mixed Boundary Conditions Based on Higher- Order Shear Deformation Theory,” Archive of Applied Mechanics, Vol. 82, No. 6, 2012, pp. 755- 766. doi:10.1007/s00419-011-0588-y
[57] D. J. Benson, Y. Bazilevsa, M. C, Hsua and T. J. R. Hughes, “Isogeometric Shell Analysis: The Reissner- Mindlin Shell,” Computer Methods in Applied Mechanics and Engineering, Vol. 199, No. 5-8, 2010, pp. 276-289. doi:10.1016/j.cma.2009.05.011
[58] Y. Z. Yuan, A. F. Saleeb and A. S. Gendy, “Stress Projection, Layerwise-Equivalent, Formulation for Accurate Predictions of Transverse Stresses in Laminated Plates and Shells,” International Journal of Computational Engineering Science, Vol. 1, No. 1, 2000, pp. 91-138. doi:10.1142/S1465876300000033
[59] D. Kim and R. A. Chaudhuri, “Effect of Lamination Sequence on the Localization and Shear Crippling Instability in Thick Imperfect Cross-Ply Rings under External Pressure,” Composite Structures, Vol. 80, No. 4, 2007, pp. 504. doi:10.1016/j.compstruct.2006.07.011
[60] D. Kimn and R. A. Chaudhuri, “Effect of Thickness on Buckling of Perfect Cross-Ply Rings under External Pressure,” Composite Structures, Vol. 81, No. 4, 2007, pp. 525-532. doi:10.1016/j.compstruct.2006.09.015
[61] R. A. Chaudhuri and D. Kim, “Sensitivity of the Post-Localization Response of a Thick Cross-Ply Imperfect Ring to Transverse Young’s Modulus Nonlinearity,” Composite Structures, Vol. 84, No. 1, 2008, pp. 44-56. doi:10.1016/j.compstruct.2007.06.006
[62] T. Leigh and A. Tafreshi, “Delamination Buckling of Composite Cylindrical Panels under Axial Compressive Load,” ASME 7th Biennial Conference on Engineering Systems Design and Analysis (ESDA2004), Manchester, 19-22 July 2004, pp. 387-396.
[63] P. Malekzadeh, “A Two-Dimensional Layerwise- Differential Quadrature Static Analysis of Thick Laminated Composite Circular Arches,” Applied Mathematical Model- ling, Vol. 33, No. 4, 2009, pp. 1850-1861. doi:10.1016/j.apm.2008.03.008
[64] J. H. Roh, J. H. Han and I. Lee, “Effects of Shape Memory Alloys on Structural Modification,” Key Engineering Materials, Advances in Nondestructive Evaluation, Vol. 270, 2004, pp. 2120-2125.
[65] J. H. Roh, I. K. Oh, S. M. Yang, J. H. Han and I. Lee, “Thermal Post-Buckling Analysis of Shape Memory Alloy Hybrid Composite Shell Panels,” Smart Materials and Structures, Vol. 13, No. 6, 2004, p. 1337. doi:10.1088/0964-1726/13/6/006
[66] W. H. Shin, I. K. Oh and I. Lee, “Nonlinear Flutter of Aerothermally Buckled Composite Shells with Damping Treatments,” Journal of Sound and Vibration, Vol. 324, No. 3-5, 2009, pp. 556-569. doi:10.1016/j.jsv.2009.02.022
[67] M. Tahani, “Analysis of Laminated Composite Beams Using Layerwise Displacement Theories,” Composite Structures, Vol. 79, No. 4, 2007, pp. 535-547. doi:10.1016/j.compstruct.2006.02.019
[68] M. S. Qatu and E. Asadi, “Vibration of Doubly Curved Shallow Shells with Arbitrary Boundary Conditions,” Applied Acoustics, Vol. 73, No. 1, 2012, pp. 21-27. doi:10.1016/j.apacoust.2011.06.013
[69] H. S. Shen, “Buckling and Postbuckling of Laminated Thin Cylindrical Shells under Hygrothermal Environments,” Applied Mathematics and Mechanics, Vol. 22, No. 3, 2001, pp. 270-281. doi:10.1007/BF02437965
[70] K. P. Soldatos and X. Shu, “Modeling of Perfectly and Weakly Bonded Laminated Plates and Shallow Shells,” Composites Science and Technology, Vol. 61, No. 2, 2001, pp. 247-260. doi:10.1016/S0266-3538(00)00207-4
[71] R. A. Chaudhuri, K. Balaraman and V. X. Kunukkasseril, “Admissible Boundary Conditions and Solutions to Internally Pressurized Thin Arbitrarily Laminated Cylindrical Shell Boundary-Value Problems,” Composite Structures, Vol. 86, No. 4, 2008, pp. 385-400. doi:10.1016/j.compstruct.2007.12.008
[72] P. Khosravi, R. Ganesan and R. Sedaghati, “An Efficient Facet Shell Element for Corotational Nonlinear Analysis of Thin and Moderately Thick Laminated Composite Structures,” Computers & Structures, Vol. 86, No. 9, 2008, pp. 850-858.
[73] A. H. Sofiyev, Z. Zerin and M. Turkmen, “The Buckling of Laminated Cylindrical Thin Shells under Torsion Varying as a Linear Function of Time,” Turkish Journal of Engineering & Environmental Sciences, Vol. 27, 2003, pp. 237-245.
[74] K. Weicker, R. Salahifar and M. Mohareb, “Shell Analysis of Thin-Walled Pipes. Part I: Field Equations and Solution,” International Journal of Pressure Vessels and Piping, Vol. 87, No. 7, 2010, pp. 402-413. doi:10.1016/j.ijpvp.2010.03.025
[75] K.Weicker, R. Salahifar and M. Mohareb, “Shell Analysis of Thin-Walled Pipes. Part I: Finite Element Formulation,” International Journal of Pressure Vessels and Piping, Vol. 87, No. 7, 2010, pp. 414-423. doi:10.1016/j.ijpvp.2010.03.026
[76] J.Kiendla, Y. Bazilevsb, M. C. Hsub, R. Wüchnera and K. U. Bletzingera, “The Bending Strip Method for Isogeometric Analysis of Kirchhof-Love Shell Structures Comprised of Multiple Patches,” Computer Methods in Applied Mechanics and Engineering, Vol. 199, No. 37-40, 2010, pp. 2403-2416. doi:10.1016/j.cma.2010.03.029
[77] B. Prabu, A. V. Raviprakash and A. Venkatraman, “Parametric Study on Buckling Behaviour of Dented Short Carbon Steel Cylindrical Shell Subjected to Uniform Axial Compression,” Thin-Walled Structures, Vol. 48, No. 8, 2010, pp. 639-649. doi:10.1016/j.tws.2010.02.009
[78] B. Yu and L. Yang, “Elastic Modulus Reduction Method for Limit Analysis of Thin Plate and Shell Structures,” Thin-Walled Structures, Vol. 48, No. 4-5, 2010, pp. 291-298. doi:10.1016/j.tws.2009.12.004
[79] K. S. Challagulla, A. V. Georgiades, G. C. Saha and A. L. Kalamkarov, “Micromechanical Analysis of Grid-Reinforced Thin Composite Generally Orthotropic Shells,” Composites Part B: Engineering, Vol. 39, No. 4, 2008, pp. 627-644. doi:10.1016/j.compositesb.2007.06.005
[80] M. Jakomina, F. Koselb and T. Kosel, “Thin Double Curved Shallow Bimetallic Shell of translation in a Homogenous Temperature Field by Non-Linear Theory,” Thin-Walled Structures, Vol. 48, No. 3, 2010, pp. 243- 259. doi:10.1016/j.tws.2009.10.005
[81] A. Ghassemi, A. Shahidi and M. Farzin, “A New Element for Analyzing Large Deformation of THIN NAGHDI SHELL MODEL. Part 1: Elastic,” Applied Mathematical Modelling, Vol. 34, No. 12, 2010, pp. 4267-4277. doi:10.1016/j.apm.2010.05.001
[82] E. V. Morozov, “The Effect of Filament-Winding Mosaic Patterns on the Strength of Thin-Walled Composite Shells,” Composite Structures, Vol. 76, No. 1-2, 2006, pp. 123- 129. doi:10.1016/j.compstruct.2006.06.018
[83] A. N. Guz’ and K. I. Shnerenko, “Solution of Two-Di- mensional Boundary-Value Problems of the Theory of Thin Composite Shells,” Mechanics of Composite Materials, Vol. 36, No. 4, 2000, pp. 273-276. doi:10.1007/BF02262805
[84] V. A. Maksimyuk and I. S. Chernyshenko, “Numerical Analysis of the Efficiency of Using Theories of Thin and Thick Composite Shells in Stress Concentration Problems,” Journal of Mathematical Sciences, Vol. 103, No. 3, 2001, pp. 320-324. doi:10.1023/A:1011354010197
[85] A. Z. Galishin and Y. N. Shevchenko, “Determining the Axisymmetric, Geometrically Nonlinear, Thermoelastoplastic State of Laminated Orthotropic Shells,” International Applied Mechanics, Vol. 39, No. 1, 2003, pp. 56- 63. doi:10.1023/A:1023664032711
[86] T. L. Wang, W. N. Tang and S. K. Zhang, “Nonlinear Dynamic Response and Buckling of Laminated Cylindrical Shells with Axial Shallow Groove Based on a Semi-Analytical Method,” Journal of Shanghai University (English Edition), Vol. 11, No. 3, 2007, pp. 223-228.
[87] C. K. Kundu, D. K. Maiti and P. K. Sinha, “Nonlinear Finite Element Analysis of Laminated Composite Doubly Curved Shells in Hygrothermal Environment,” Journal of Reinforced Plastics and Composites, Vol. 26, No. 14, 2007, pp. 1461-1478. doi:10.1177/0731684407079751
[88] N. V. S. Naidu and P. K. Sinha, “Nonlinear Finite Element Analysis of Laminated Composite Shells in Hygrothermal Environments,” Composite Structures, Vol. 69, No. 4, 2005, pp. 387-395. doi:10.1016/j.compstruct.2004.07.019
[89] X. Guo, Y. Y. Lee and C. Mei, “Non-Linear Random Response of Laminated Composite Shallow Shells Using Finite Element Modal Method,” International Journal for Numerical Methods in Engineering, Vol. 67, No. 10, 2006, pp. 1467-1489. doi:10.1002/nme.1672
[90] B. P. Patel, Y. Nath and K. K. Shukla, “Nonlinear Thermo- Elastic Buckling Characteristics of Cross-Ply Laminated Joined Conical-Cylindrical Shells,” International Journal of Solids and Structures, Vol. 43, No. 16, 2006, pp. 4810-4829. doi:10.1016/j.ijsolstr.2005.07.025
[91] B. P. Patel, K. K. Shuklab and Y. Nath, “Nonlinear Thermoelastic Stability Characteristics of Cross-Ply Laminated Oval Cylindrical/Conical Shells,” Finite Elements in Analysis and Design, Vol. 42, No. 12, 2006, pp. 1061- 1070. doi:10.1016/j.finel.2006.03.009
[92] J.-C. Xu, Y. Li, F. Wang and R.-H. Liu, “Nonlinear Sta- bility of Double-Deck Reticulated Circular Shallow Spheri- cal Shell,” Applied Mathematics and Mechanics, Vol. 31, No. 3, 2010, pp. 279-290. doi:10.1007/s10483-010-0302-7
[93] S. K. Panda and B. N. Singh, “Thermal Post-Buckling Analysis of a Laminated Composite Spherical Shell Panel Embedded with Shape Memory Alloy Fibers Using Non- Linear Finite Element Methods,” Journal of Mechanical Engineering Science, Vol. 224, No. 4, 2010, pp. 757-769. doi:10.1243/09544062JMES1809
[94] K. Y. Sze and S. J Zheng, “A Stabilized Hybrid-Stress Solid Element for Geometrically Nonlinear Homogeneous and Laminated Shell Analyses,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, No. 17, 2002, pp. 1945-1966.
[95] L. G. Andrade, A. M. Awruch and I. B. Morsch, “Geometrically Nonlinear Analysis of Laminate Composite Plates and Shells Using the Eight-Node Hexahedral Element with One-Point Integration,” Composite Structures, Vol. 79, No. 4, 2007, pp. 571-580. doi:10.1016/j.compstruct.2006.02.022
[96] K. D. Kima, S. C. Hanb and S. Suthasupradit, ”Geometrically Non-Linear Analysis of Laminated Compos Structures Using a 4-Node Co-Rotational Shell Element with Enhanced Strains,” International Journal of Non-Linear Mechanics, Vol. 42, No. 6, 2007, pp. 864-881. doi:10.1016/j.ijnonlinmec.2007.03.011
[97] J. Huang, “Nonlinear Buckling of Composite Shells of Revolution,” Journal of Aerospace Engineering, Vol. 15, No. 2, 2002, pp. 64-71. doi:10.1061/(ASCE)0893-1321(2002)15:2(64)
[98] A. J. M. Ferreira, J. M. A. C. Sá and A. T. Marques, “Nonlinear Finite Element Analysis of Rubber Composite Shells,” Strength of Materials, Vol. 35, No. 3, 2003, pp. 225-235. doi:10.1023/A:1024656604257
[99] L. P. Khoroshun, D. V. Babich and E. N. Shikula, “Stability of Cylindrical Shells Made of a Particulate Composite with Nonlinear Elastic Inclusions and Damageable Matrix,” International Applied Mechanics, Vol. 43, No. 10, 2007, pp. 1123-1131. doi:10.1007/s10778-007-0112-9
[100] L. P. Khoroshun, D. V. Babich and E. N. Shikula, “Stability of Cylindrical Shells Made of a Particulate Composite with Nonlinear Elastic Matrix and Damaged Inclusions,” International Applied Mechanics, Vol. 43, No. 8, 2007, pp. 893-902. doi:10.1007/s10778-007-0090-y
[101] L. R. Hsia, “Nonlinear Response of Thick Laminated Shells with Inter-Laminar Deformation,” Ph.D. Thesis, University of Utah, Salt Lake, 2006, p. 88.
[102] X. Wang, G. Lub and D. G. Xiao, “Non-Linear Thermal Buckling for Local Delamination near the Surface of Laminated Cylindrical Shell,” International Journal of Mechanical Sciences, Vol. 44, No. 5, 2002, pp. 947-965. doi:10.1016/S0020-7403(02)00028-0
[103] J. S. Moitaa, J. Infante Barbosab, C. M. M. Soaresb and C. A. M. Soares, “Sensitivity Analysis and Optimal Design of Geometrically Non-Linear Laminated Plates and Shells,” Computers & Structures, Vol. 76, No. 1-3, 2000, pp. 407-420. doi:10.1016/S0045-7949(99)00164-9
[104] R. J. Razzaq and A. El-Zafrany, “Non-Linear Stress Analysis of Composite Layered Plates and Shells Using a Mesh Reduction Method,” Engineering Analysis with Boundary Elements, Vol. 29, No. 12, 2005, pp. 1115- 1123. doi:10.1016/j.enganabound.2005.07.001
[105] E. I. Bespalova and G. P. Urusova, “Contact Interaction between Prestressed Laminated Shells of Revolution and a Flat Foundation,” International Applied Mechanics, Vol. 42, No. 10, 2006, pp. 1137-1144. doi:10.1007/s10778-006-0185-x
[106] I. F. Pinto Correia, P.G. Martins, C. M. M. Soares, C. A. M. Soares and J. Herskovits, “Modelling and Optimization of Laminated Adaptive Shells of Revolution,” Composite Structures, Vol. 75, No. 1-4, 2006, pp. 49-59. doi:10.1016/j.compstruct.2006.04.003
[107] A. T. Vasilenko, E. I. Bespalova and G. P. Urusova, “Contact Interaction between a Laminated Shell of Revolution and a Rigid or Elastic Foundation,” International Applied Mechanics, Vol. 41, No. 5, 2005, pp. 520-525. doi:10.1007/s10778-005-0118-0
[108] L. P. Khoroshun and D. V. Babich, “Stability of Laminated Convex Shells of Revolution with Microdamages in Laminate Components,” International Applied Mechanics, Vol. 42, No. 7, 2006, pp. 810-817. doi:10.1007/s10778-006-0149-1
[109] A. T. Vasilenko, I. G. Emel’yanov and V. Y. Kuznetsov, “Stress Analysis of Laminated Shells of Revolution with an Imperfect Interlayer Contact,” International Applied Mechanics, Vol. 37, No. 5, 2001, pp. 662-669. doi:10.1023/A:1012316614790
[110] N. A. Gureeva, Y. V. Klochkov and A. P. Nikolaev, “Analysis of an Arbitrary Loaded Shell of Revolution Based on the Finite Element Method in a Mixed Formulation,” Russian Aeronautics (IZ VUZ), Vol. 53, No. 3, 2010, pp. 7-10. doi:10.3103/S1068799810030025
[111] V. A. Merzlyakov and A. Z. Galishin, “Thermoelastoplastic Nonaxisymmetric Stress-Strain Analysis of Laminated Shells of Revolution,” International Applied Mechanics, Vol. 37, No. 9, 2001, pp. 1166-1174. doi:10.1023/A:1013282331902
[112] Z. Ye and Z. Zhou, “The Bending of Composite Shallow Revolutional Shells,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 214, No. 6, 2000, pp. 369-376. doi:10.1243/0954410001531953
[113] V. M. Trach, “Stability of Composite Shells of Revolution,” International Applied Mechanics, Vol. 44, No. 3, 2008, pp. 331-344. doi:10.1007/s10778-008-0049-7
[114] L. P. Khoroshun and D. V. Babich, “Stability of Shells of Revolution Made of Granular Composite with Damageable Components,” International Applied Mechanics, Vol. 40, No. 9, 2004, pp. 1028-1036. doi:10.1007/s10778-005-0007-6
[115] W. H. Shin, S. J. Lee and I. K. Oh, I Lee, “Thermal Post-Buckled Behaviors of Cylindrical Composite Shells with Viscoelastic Damping Treatments,” Journal of Sound and Vibration, Vol. 323, No. 1-2, 2009, pp. 93-111. doi:10.1016/j.jsv.2008.12.029
[116] K. Bhaskar and G. Balasubramanyam, “Accurate Analysis of End-Loaded Laminated Orthotropic Cylindrical Shells,” Composite Structures, Vol. 58, No. 2, 2002, pp. 209-216. doi:10.1016/S0263-8223(02)00122-8
[117] V. A. Merglyakov and A. Z. Gatishin, “Analysis of the Thermoelastoplastic Nonaxisymmetric Stress-Strain State of Laminated Circular Cylindrical Shells,” International Applied Mechanics, Vol. 36, No. 2, 2000, pp. 241-246. doi:10.1007/BF02681999
[118] P. M. Weaver, J. R. Driesen and P. Roberts, “Anisotropic Effects in the Compression Buckling of Laminated Composite Cylindrical Shells,” Composites Science and Technology, Vol. 62, No. 1, 2002, pp. 91-105. doi:10.1016/S0266-3538(01)00186-5
[119] X. Huang and G. Lu, “Buckling Analysis of Laminated Circular Cylindrical Shells Using a Two-Surface Theory,” International Journal of Mechanical Engineering Education, Vol. 30, No. 2, 2000, pp. 171-183.
[120] H. S. Shen and Y. Xiang, “Buckling and Postbuckling of Anisotropic Laminated Cylindrical Shells under Combined Axial Compression and Torsion,” Composite Structures, Vol. 84, No. 4, 2008, pp. 375-386. doi:10.1016/j.compstruct.2007.10.002
[121] C. G. Diaconu, M. Sato and H. Sekine, “Buckling Characteristics and Layup Optimization of Long Laminated Composite Cylindrical Shells Subjected to Combined Loads Using Lamination Parameters,” Composite Structures, Vol. 58, No. 4, 2002, pp. 423-433. doi:10.1016/S0263-8223(02)00130-7
[122] Y. M. Fu and J. H. Yang, “Delamination Growth for Composite Laminated Cylindrical Shells under External Pressure,” Applied Mathematics and Mechanics, Vol. 28, No. 9, 2007, pp. 1133-1144. doi:10.1007/s10483-007-0901-1
[123] J. H. Yang and Y. M. Fu, “Delamination Growth of Laminated Composite Cylindrical Shells,” Theoretical and Applied Fracture Mechanics, Vol. 45, No. 3, 2006, pp. 192-203. doi:10.1016/j.tafmec.2006.03.003
[124] H. S. Shen, “Hygrothermal Effects on the Postbuckling of Composite Laminated Cylindrical Shells,” Composites Science and Technology, Vol. 60, No. 8, 2000, pp. 1227- 1240. doi:10.1016/S0266-3538(00)00062-2
[125] X. Wang and K. Dong, “Local Buckling for Triangular and Lemniscate Delaminations near the Surface of Laminated Cylindrical Shells under Hygrothermal Effects,” Composite Structures, Vol. 79, No. 1, 2007, pp. 67-75. doi:10.1016/j.compstruct.2005.11.029
[126] Y. Goldfeld and E. A. Ejgenberg, “On the Different Formulations in Linear Bifurcation Analysis of Laminated Cylindrical Shells,” International Journal of Solids and Structures, Vol. 44, No. 25-26, 2007, pp. 8613-8626. doi:10.1016/j.ijsolstr.2007.06.026
[127] H. S. Shen, “Postbuckling Analysis of Axially-Loaded Laminated Cylindrical Shells with Piezoelectric Actuators,” European Journal of Mechanics—A/Solids, Vol. 20, No. 6, 2001, pp. 1007-1022. doi:10.1016/S0997-7538(01)01176-7
[128] H. S. Shen, “Postbuckling of Laminated Cylindrical Shells with Piezoelectric Actuators under Combined External Pressure and Heating,” International Journal of Solids and Structures, Vol. 39, No. 16, 2002, pp. 4271- 4289. doi:10.1016/S0020-7683(02)00262-7
[129] H. S. Shen and Q. S. Li, “Postbuckling of Cross-Ply Laminated Cylindrical Shells with Piezoelectric Actuators under Complex Loading Conditions,” International Journal of Mechanical Sciences, Vol. 44, No. 8, 2002, pp. 1731-1754. doi:10.1016/S0020-7403(02)00056-5
[130] S. K. Panda and L. S. Ramachandra, “Postbuckling Analysis of Cross-Ply Laminated Cylindrical Shell Panels under Parabolic Mechanical Edge Loading,” Thin-Walled Structures, Vol. 48, No. 8, 2010, pp. 660-667. doi:10.1016/j.tws.2010.04.010
[131] T. Rahman and E. L. Jansen, “Finite Element Based Coupled Mode Initial Post-Buckling Analysis of a Composite Cylindrical Shell,” Thin-Walled Structures, Vol. 48, No. 1, 2010, pp. 25-32. doi:10.1016/j.tws.2009.08.003
[132] X. I. Wangi and D. G. Xiao, “A Study of Buckling of near Surface Local Delamination in a Cylindrical Laminated Shell,” Journal of Reinforced Plastics and Composites, Vol. 20, No. 2001, pp. 1633-1643. doi:10.1177/073168401772679093
[133] H. S. Shen, “Boundary Layer Theory for the Buckling and Postbuckling of an Anisotropic Laminated Cylindrical Shell. Part I: Prediction under Axial Compression,” Composite Structures, Vol. 82, No. 3, 2008, pp. 346-361. doi:10.1016/j.compstruct.2007.01.024
[134] H. S. Shen, “Boundary Layer Theory for the Buckling and Postbuckling of an Anisotropic Laminated Cylindrical Shell, Part II: Prediction under External Pressure,” Composite Structures, Vol. 82, No. 3, 2008, pp. 362-370. doi:10.1016/j.compstruct.2007.01.018
[135] H. S. Shen, “Boundary Layer Theory for the Buckling and Postbuckling of an Anisotropic Laminated Cylindrical Shell, Part III: Prediction under Torsion,” Composite Structures, Vol. 82, No. 3, 2008, pp. 371-381. doi:10.1016/j.compstruct.2007.01.013
[136] X. Wang, Y. C. Zhang and H. L. Dai, “Critical Strain for a Locally Elliptical Delamination near the Surface of a Cylindrical Laminated Shell under Hydrothermal Effects,” Composite Structures, Vol. 67, No. 4, 2005, pp. 491-499. doi:10.1016/j.compstruct.2004.02.008
[137] B. Geier, H. R. Meyer-Piening and R. Zimmermann, “On the Influence of Laminate Stacking on Buckling of Composite Cylindrical Shells Subjected to Axial Compression,” Composite Structures, Vol. 55, No. 4, 2002, pp. 467-474. doi:10.1016/S0263-8223(01)00175-1
[138] P. M. Weaver, J. R. Driesen and P. Robers, “The effect of Flexural-Twist Anisotropy on Compression Buckling of Quasi-Isotropic Laminated Cylindrical Shells,” Composite Structures, Vol. 55, No. 2, 2002, pp. 195-204. doi:10.1016/S0263-8223(01)00147-7
[139] X. Wang and H. L. Dai, “Thermal Buckling for Local Delamination near the Surface of Laminated Cylindrical Shells and Delaminated Growth,” Journal of Thermal Stresses, Vol. 26, No. 5, 2003, pp. 423-442. doi:10.1080/713855935
[140] Y. Zhu, F. Wang and R. H. Liu, “Thermal Buckling of Axisymmetrically Laminated Cylindrically Orthotropic Shallow Spherical Shells including Transverse Shear,” Applied Mathematics and Mechanics, Vol. 29, No. 3, 2008, pp. 291-300. doi:10.1007/s10483-008-0302-7
[141] B. P. Patel, K. K. Shukla and Y. Nath, “Thermal Buckling of Laminated Cross-Ply Oval Cylindrical Shells,” Composite Structures, Vol. 65, No. 2, 2004, pp. 217-229. doi:10.1016/j.compstruct.2003.10.018
[142] J. Yang and Y. Fu, “Analysis of Energy Release Rate for Composite Delaminated Cylindrical Shells Subjected to Axial Compression,” Acta Mechanica Sinica, Vol. 22, No. 6, 2006, pp. 537-546. doi:10.1007/s10409-006-0032-7
[143] M. W. Hilburger and J. H. Starnes Jr., “Buckling Behavior of Compression-Loaded Composite Cylindrical Shells with Reinforced Cutouts,” International Journal of Non- Linear Mechanics, Vol. 40, No. 7, 2005, pp. 1005- 1021. doi:10.1016/j.ijnonlinmec.2005.02.001
[144] N. P. Semenyuk, I. Y. Babich and N. B. Zhukova, “Buckling Instability of Sectional Noncircular Cylindrical Composite Shells under Axial Compression,” Mechanics of Composite Materials, Vol. 39, No. 6, 2003, pp. 541-552. doi:10.1023/B:MOCM.0000010626.76920.69
[145] A. Tafreshi, “Delamination Buckling and Postbuckling in Composite Cylindrical Shells under Combined Axial Compression and External Pressure,” Composite Structures, Vol. 72, No. 4, 2006, pp. 401-418. doi:10.1016/j.compstruct.2005.01.009
[146] S. Solaimurugan and R. Velmurugan, “Influence of Fiber Orientation and Stacking Sequence on Petalling of Glass-Polyester Composite Cylindrical Shells under Axial Compression,” International Journal of Solids and Structures, Vol. 44, No. 21, 2007, pp. 6999-7020. doi:10.1016/j.ijsolstr.2007.03.025
[147] N. P. Semenyuk and N. B. Zhukova, “Initial Postbuckling Behavior of Cylindrical Composite Shells under Axisymmetric Deformation,” International Applied Mechanics, Vol. 42, No. 4, 2006, pp. 461-470. doi:10.1007/s10778-006-0103-2
[148] A. Tafreshi, “Instability of Delaminated Composite Cylindrical Shells under Combined Axial Compression and Bending,” Composite Structures, Vol. 82, No. 3, 2008, pp. 422-433. doi:10.1016/j.compstruct.2007.01.021
[149] P. M. Weaver and R. Dickenson, “Interactive Local/Euler Buckling of Composite Cylindrical Shells,” Computers & Structures, Vol. 81, No. 30-31, 2003, pp. 2767-2773. doi:10.1016/S0045-7949(03)00339-0
[150] P. Kere and M. Lyly, “On Post-Buckling Analysis and Experimental Correlation of Cylindrical Composite Shells with Reissner-Mindlin-Von Kármán Type Facet Model,” Computers & Structures, Vol. 86, No. 2008, pp. 1006- 1013. doi:10.1016/j.compstruc.2007.04.025
[151] A. Vaziri, “On the Buckling of Cracked Composite Cylindrical Shells under Axial Compression,” Composite Structures, Vol. 80, No. 1, 2007, pp. 152-158. doi:10.1016/j.compstruct.2006.05.007
[152] N. P. Semenyuk, N. B. Zhukova and V. V. Ostapchuk, “Stability of Corrugated Composite Noncircular Cylindrical Shells under External Pressure,” International Applied Mechanics, Vol. 43, No. 12, 2007, pp. 1380-1389. doi:10.1007/s10778-008-0009-2
[153] A. Tafreshi, “Buckling and Post-Buckling Analysis of Composite Cylindrical Shells with Cutouts Subjected to Internal Pressure and Axial Compression Loads,” International Journal of Pressure Vessels and Piping, Vol. 79, No. 5, 2002, pp. 351-359. doi:10.1016/S0308-0161(02)00026-1
[154] A. Tafreshi, “Delamination Buckling and Postbuckling in Composite Cylindrical Shells under External Pressure,” Thin-Walled Structures, Vol. 42, No. 10, 2004, pp. 1379- 1404. doi:10.1016/j.tws.2004.05.008
[155] I. Y. Babich and N. P. Semenyuk, “The Stability of Cylindrical and Conic Shells Made of Composite Materials with an Elastoplastic Matrix,” International Applied Mechanics, Vol. 36, 2000, No. 6, pp. 697-728. doi:10.1007/BF02681981
[156] M. Biagi and F. D. Medico, “Reliability-Based Knockdown Factors for Composite Cylindrical Shells under Axial Compression,” Thin-Walled Structures, Vol. 46, No. 12, 2008, pp. 1351-1358. doi:10.1016/j.tws.2008.03.012
[157] I. Sheinman and M. Jabareen, “Postbuckling of Laminated Cylindrical Shells in Different Formulation,” AIAA Journals, Vol. 43, No. 5, 2005, pp. 1117-1123. doi:10.2514/1.11557
[158] A. R. De Faria, “Buckling Optimization of composite Plates and Cylindrical Shells: Uncertain Load Combinations,” Ph.D. Thesis, University of Toronto, Toronto, 2000, p. 167.
[159] X. Wang, W. Cai and Z. Y. Yu, “An Analytic Method for Interlaminar Stress in a Laminated Cylindrical Shell,” Mechanics of Advanced Materials and Structures, Vol. 9, No. 2, 2002, pp. 119-131. doi:10.1080/153764902753510507
[160] C. H. Lin and M. H. R. Jen, “Analysis of Laminated Anisotropic Cylindrical Shell by Chebyshev Collocation Method,” Journal of Applied Mechanics, Vol. 70, No. 3, 2003, pp. 391-403. doi:10.1115/1.1574059
[161] S. Lemanski and P. Weaver, “Optimisation of a 4-Layer Laminated Cylindrical Shell to Meet Given Cross- Sectional Stiffness Properties,” Composite Structures, Vol. 72, No. 2, 2006, pp. 163-176. doi:10.1016/j.compstruct.2004.11.005
[162] Y.-G. Gong, H. E. Ling-Feng, “Experimental Study and Numerical Calculation of Stability and Load-Carrying Capacity of Cylindrical Shell with Initial Dent,” Journal of the Society for Experimental Mechanics, Vol. 1, No. 1, 2010, pp. 1-11.
[163] L. P. Khoroshun and D. V. Babich, “Stability of Cylindrical Shells Made of a Laminate Material with Damageable Components,” International Applied Mechanics, Vol. 42, No. 6, 2006, pp. 677-683. doi:10.1007/s10778-006-0135-7
[164] A. Alibeigloo, “Static Analysis of an Anisotropic Laminated Cylindrical Shell with Piezoelectric Layers Using Differential Quadrature Method,” Mechanical Engineering Science, Vol. 222, No. 6, 2008, pp. 865-880. doi:10.1243/09544062JMES866
[165] Y. Goldfeld, “The influence of the Stiffness Coefficients on the Imperfection Sensitivity of Laminated Cylindrical Shells,” Composite Structures, Vol. 64, No. 2, 2004, pp. 243-247. doi:10.1016/j.compstruct.2003.07.002
[166] A. M. Zenkour and M. E. Fares, “Thermal Bending Analysis of Composite Laminated Cylindrical Shells Using a Refined First-Order Theory,” Journal of Thermal Stresses, Vol. 23, No. 5, 2000, pp. 505-526. doi:10.1080/014957300403969
[167] Y. Jinhua, F. Yiming and W. Xianqiao, “Variational Analysis of Delamination Growth for Composite Laminated Cylindrical Shells under Circumferential Concentrated Load,” Composites Science and Technology, Vol. 67, No. 3-4, 2007, pp. 541-550. doi:10.1016/j.compscitech.2006.07.036
[168] T. E. Meink, S. Huybrechts and M. H. H. Shen, “Processing Induced Warpage of filament Wound Composite Cylindrical Shells,” Journal of Composite Materials, Vol. 36, No. 9, 2002, pp. 1025-1047. doi:10.1177/0021998302036009496
[169] S. Solaimurugan and R. Velmurugan, “Progressive Crushing of Stitched Glass-Polyester Composite Cylindrical Shells,” Composites Science and Technology, Vol. 67, No. 3-4, 2007, pp. 422-437. doi:10.1016/j.compscitech.2006.09.002
[170] H. Seif, A. H. Sofiyev, E. Yusufoglu and Z. Karaca, “Semi-Analytical Solution of Stability of Composite Orthotropic Cylindrical Shells under Time Dependant a Periodic Axial Compressive Load,” Iranian Journal of Science and Technology, Vol. 30, No. A3, 2006, pp. 343-347.
[171] R. Burgue?o and K. M. Bhide, “Shear Response of Concrete-Filled FRP Composite Cylindrical Shells,” Journal of Structural Engineering, Vol. 132, No. 6, 2006, pp. 949-960. doi:10.1061/(ASCE)0733-9445(2006)132:6(949)
[172] L. G. Belozerov, V. A. Kireev, “An Economical Method of Determining the Elasticity Characteristics of the Composite Material of Cylindrical Shells,” Measurement Techniques, Vol. 44, No. 12, 2001, pp. 1224-1233. doi:10.1023/A:1014726305382
[173] N. P. Semenyuk and V. M. Trach, “Bending of Cord Composite Cylindrical Shells with Noncoincident Directions of Layer Reinforcements and Coordinate Lines,” Mechanics of Composite Materials, Vol. 41, No. 5, 2005, pp. 437-444. doi:10.1007/s11029-005-0069-x
[174] A. J. Paris and G. A. Costello, “Bending of Cord Composite Cylindrical Shells,” Journal of Applied Mechanics, Vol. 67, No. 1, 2000, pp. 117-127. doi:10.1115/1.321156
[175] E. A. Movsumov and F. H. Shamiev, “Yield Condition for Circular Cylindrical Shells Made of a Fiber-Rein- forced Composite,” Mechanics of Composite Materials, Vol. 42, No. 5, 2006, pp. 459-466. doi:10.1007/s11029-006-0056-x
[176] Y. Q. Zang, D. Zhang, H. Y. Zhou, H. Z. Mab and T. K. Wang, “Non-Linear Dynamic Buckling of Laminated Composite Shallow Spherical Shells,” Composites Science and Technology, Vol. 60, No. 12-13, 2000, pp. 2361- 2363. doi:10.1016/S0266-3538(00)00031-2
[177] H. Kioua and S. Mirza, “Piezoelectric Induced Bending and Twisting of Laminated Composite Shallow Shells,” Smart Materials and Structures, Vol. 9, No. 4, 2000, pp. 476-484. doi:10.1088/0964-1726/9/4/310
[178] A. H. Niemi, “A Bilinear Shell Element Based on a Refined Shallow Shell Mode,” International Journal for Numerical Methods in Engineering, Vol. 81, No. 4, 2010, pp. 485-512.
[179] I. S. Zarivnyak, “Probability of the Critical State of Glue Joints of a Shallow Laminated Shell with Random Irregularities,” Strength of Materials, Vol. 38, No. 1, 2006, pp. 99-107. doi:10.1007/s11223-006-0021-x
[180] Y. M. Grigorenko, N. N. Kryukov and Y. I. Ivanova, “Stress Analysis of Biconvex Laminated Orthotropic Shells that Are Shallow to a Variable Degree,” International Applied Mechanics, Vol. 39, No. 6, 2003, pp. 688-695. doi:10.1023/A:1025745925235
[181] K. M. Gupta, “An Orthotropic adaptive shallow cylindrical shell on elastic foundation,” International Journal of Research and Reviews in Applied Sciences, Vol. 2, No. 1, 2010, pp. 67-87.
[182] C. P. Wu, Y. C. Hung and J. Y. Lo, “A Refined Asymptotic Theory of Laminated Circular Conical Shells,” Euro- pean Journal of Mechanics—A/Solids, Vol. 21, No. 2, 2002, pp. 281-300. doi:10.1016/S0997-7538(01)01199-8
[183] H. S. Das and D. Chakravorty, “A Finite Element Application in the Analysis and Design of Point-Supported Composite Conoidal Shell Roofs: Suggesting Selection Guidelines,” Journal of Strain Analysis for Engineering Design, Vol. 45, 2010, pp. 165-177. doi:10.1243/03093247JSA582
[184] E. Mahdi, A. M. S. Hamouda, B. B. Sahari and Y. A. Khalid, “Effect of Material and Geometry on Crushing Behaviour of Laminated Conical Composite Shells,” Applied Composite Materials, Vol. 9, No. 5, 2002, pp. 265- 290. doi:10.1023/A:1019695903534
[185] Y. Goldfeld, “Imperfection Sensitivity of Laminated Conical Shells,” International Journal of Solids and Structures, Vol. 44, No. 3-4, 2007, pp. 1221-1241. doi:10.1016/j.ijsolstr.2006.06.016
[186] Y. Goldfeld, K. Vervenne, J. Arbocz and F. V. Keulen, “Multi-Fidelity Optimization of Laminated Conical Shells for Buckling,” Structural and Multidisciplinary Optimization, Vol. 30, No. 2, 2005, pp. 128-141. doi:10.1007/s00158-004-0506-9
[187] E. Mahdi, A. M. S. Hamoudaa, B. B. Saharib and Y. A. Khalid, “Effect of Residual Stresses in a Filament Wound Laminated Conical Shell,” Journal of Materials Processing Technology, Vol. 138, No. 1-3, 2003, pp. 291-296. doi:10.1016/S0924-0136(03)00087-6
[188] B. N. Singh and J. B. Babu, “Thermal Buckling of Laminated Conical Shells Embedded with and without Piezoelectric Layer,” Journal of Reinforced Plastics and Composites, Vol. 28, No. 7, 2009, pp. 791-812. doi:10.1177/0731684407087133
[189] C. P. Wu and S. J. Chiu, “Thermoelastic Buckling of Laminated Composite Conical Shells,” Journal of Thermal Stresses, Vol. 24, No. 9, 2001, pp. 881-901. doi:10.1080/014957301750379649
[190] A. M. Rezadoust, M. Esfandeh and S. A. Sabet, “Crush Behavior of Conical Composite Shells: Effect of Cone Angle and Diameter/Wall Thickness Ratio,” Polymer-Plastics Technology and Engineering, Vol. 47, No. 2, 2008, pp. 147-151. doi:10.1080/03602550701815979
[191] Y. Goldfeld, J. Arbocz and A. Rothwell, “Design and Optimization of Laminated Conical Shells for Buckling,” Thin-Walled Structures, Vol. 43, No. 1, 2005, pp. 107- 133. doi:10.1016/j.tws.2004.07.003
[192] J. Kosonen, “Specification for Mechanical Analysis of Conical Composite Shells,” M.S. Thesis, Helsinki University of Technology, Helsinki, 2003.
[193] B. P. Patel, K. K. Shukla and Y. Nath, “Thermal Postbuckling Analysis of Laminated Cross-Ply Truncated Cir- cular Conical Shells,” Composite Structures, Vol. 71, No. 1, 2005, pp. 101-114. doi:10.1016/j.compstruct.2004.09.030
[194] B. P. Patel, Y. Nath, K. K. Shukla, “Thermal Postbuckling Characteristics of Laminated Conical Shells with Temperature-Dependent Material Properties,” AIAA Journal, Vol. 43, No. 6, 2005, pp. 1380-1388. doi:10.2514/1.13259
[195] P. Smithmaitrie and H. S. Tzou, “Micro-Control Actions of Actuator Patches Laminated on Hemispherical Shells,” Journal of Sound and Vibration, Vol. 277, No. 4-5, 2004, pp. 691-710. doi:10.1016/j.jsv.2003.09.016
[196] M. V. Marchuk, N. N. Khomyak, “Refined Mixed Finite Element Solution of the Problem on the Stress State of Laminated Spherical Shells,” International Applied Mechanics, Vol. 37, No. 12, 2001, pp. 1594-1601.
[197] R. S. He and S. F. Hwang, “Identifying Damage in Spherical Laminate Shells by Using a Hybrid Real-Pa- rameter Genetic Algorithm,” Composite Structures, Vol. 80, No. 1, 2007, pp. 32-41. doi:10.1016/j.compstruct.2006.02.035
[198] R. Kadoli and N. Ganesan, “A Theoretical Analysis of Linear Thermoelastic Buckling of Composite Hemispheri- cal Shells with a Cut-Out at the Apex,” Composite Structures, Vol. 68, No. 1, 2005, pp. 87-101. doi:10.1016/j.compstruct.2004.03.003
[199] M. A. Saleh, E. Mahdi, A. M. S. Hamouda and Y. A. Khalid, “Crushing Behaviour of Composite Hemispherical Shells Subjected to Quasi-Static Axial Compressive Load,” Composite Structures, Vol. 66, No. 1-4, 2004, pp. 487-493. doi:10.1016/j.compstruct.2004.04.073
[200] H. S. Tzou, W. K. Chai and D. W. Wang, “Micro-Control Actions and Location Sensitivity of Actuator Patches Laminated on Toroidal Shells,” Journal of Vibration and Acoustics, Vol. 126, No. 2, 2006, pp. 284-297. doi:10.1115/1.1687398
[201] A. B. Mitkevich and A. A. Kul’kov, “Design Optimization and Forming Methods for Toroidal Composite Shells,” Mechanics of Composite Materials, Vol. 42, No. 2, 2006, pp. 95-108. doi:10.1007/s11029-006-0021-8
[202] K. S. Sai Ram and T. Sreedhar Babu, “Study of Bending of Laminated Composite Shells. Part 1: Shells without a Cutout,” Composite Structures, Vol. 51, No. 1, 2001, pp. 103-116. doi:10.1016/S0263-8223(00)00129-X
[203] K. S. Sai Ram and T. Sreedhar Babu, “Study of Bending of Laminated Composite Shells. Part II: Shells with a Cutout,” Composite Structures, Vol. 51, No. 1, 2001, pp. 117-126. doi:10.1016/S0263-8223(00)00130-6
[204] S. K. Latifa and P. K. Sinha, “Improved Finite Element Analysis of Multilayered, Doubly Curved Composite Shells,” Journal of Reinforced Plastics and Composites, Vol. 24, No. 4, 2005, pp. 385-404. doi:10.1177/0731684405044899
[205] I. F. P. Correiaa, J. I. Barbosa, C. M. M. Soares and C. A. M. Soares, “A Finite Element Semi-Analytical Model for Laminated Axisymmetric Shells: Statics, Dynamics and Buckling,” Computers & Structures, Vol. 76, No. 1-3, 2000, pp. 299-317. doi:10.1016/S0045-7949(99)00165-0
[206] B. G. Prusty, “Linear Static Analysis of Composite Hat- Stiffened Laminated Shells Using Finite Elements,” Finite Elements in Analysis and Design, Vol. 39, No. 12, 2003, pp. 1125-1138. doi:10.1016/S0168-874X(02)00160-9
[207] T. Park, K. Kim and S. Han, “Linear Static and Dynamic Analysis of Laminated Composite Plates and Shells Using a 4-Node Quasi-Conforming Shell Element,” Composites Part B: Engineering, Vol. 37, No. 2-3, 2006, pp. 237- 248. doi:10.1016/j.compositesb.2005.05.007
[208] F. Alijani, M. M. Aghdam and M. Abouhamze, “Application of the Extended Kantorovich Method to the Bending of Clamped Cylindrical Panels,” European Journal of Mechanics—A/Solids, Vol. 27, No. 3, 2008, pp. 378- 388. doi:10.1016/j.euromechsol.2007.05.011
[209] M. E. Babeshko and Y. N. Shevchenko, “Elastoplastic Axisymmetric Stress-Strain State of Laminated Shells Made of Isotropic and Transversely Isotropic Materials with Different Moduli,” International Applied Mechanics, Vol. 41, No. 8, 2005, pp. 910-916. doi:10.1007/s10778-005-0159-4
[210] M. E. Babeshko and V. G. Savchenko, “Study of the Elastoplastic Axisymmetric Stress-Strain State of Irradiated Laminated Shells with a Loading History,” International Applied Mechanics, Vol. 37, No. 11, 2001, pp. 1441- 1446. doi:10.1023/A:1014228515259
[211] M. E. Babeshko and Y. N. Shevchenko, “Thermoelasto- plastic Axisymmetric Stress-Strain State of Laminated Orthotropic Shells,” International Applied Mechanics, Vol. 40, No. 12, 2001, pp. 1378-1384. doi:10.1007/s10778-005-0043-2
[212] M. E. Babeshko, “Thermoelastoplastic State of Flexible Laminated Shells under Axisymmetric Loading along Various Planes Paths,” International Applied Mechanics, Vol. 39, No. 2, 2003, pp. 177-184. doi:10.1023/A:1023957414520
[213] V. G. Shevchenko and M. E. Babeshko, “The Elastoplastic Axisymmetric Stress-Strain State of Flexible Laminated Shells Exposed to Radiation,” International Applied Mechanics, Vol. 36, No. 9, 2000, pp. 1218-1224. doi:10.1023/A:1009448018861
[214] Y. N. Shevchenko and M. E. Babeshko, “Numerical Analysis of the Thermoelastoplastic Stress-Strain State of Laminated Orthotropic Shells under Axisymmetric Loading,” Journal of Thermal Stresses, Vol. 29, No. 12, 2006, pp. 1143-1162. doi:10.1080/01495730600712790
[215] B. P. Maslov, V. B. Zhukov and A. D. Pogrebnyak, “Method of Stressed State Analysis of Thick-Walled GTE Shells from Composite Materials,” Strength of Materials, Vol. 35, No. 4, 2003, pp. 76-382. doi:10.1023/A:1025890308281
[216] M. Abouhamze, M. M. Aghdam and F. Alijani, “Bending Analysis of Symmetrically Laminated Cylindrical Panels Using the Extended Kantorovich Method,” Mechanics of Advanced Materials and Structures, Vol. 14, No. 7, 2007, pp. 523-530. doi:10.1080/15376490701585967
[217] H. J. Lee and J. J. Lee, “A numerical Analysis of the Buckling and Postbuckling Behavior of Laminated Composite Shells with Embedded Shape Memory Alloy Wire Actuators,” Smart Materials and Structures, Vol. 9, No. 6, 2000, pp. 780-787. doi:10.1088/0964-1726/9/6/307
[218] K. S. Sai-Ram and B. T. Sreedhar, “Buckling of Laminated Composite Shells under Transverse Load,” Composite Structures, Vol. 55, No. 2, 2002, pp. 157-168. doi:10.1016/S0263-8223(01)00143-X
[219] F. Peng, Y. M. Fu and Y. F. Liu, “On the Durable Critic Load in Creep Buckling of Viscoelastic Laminated Plates and Circular Cylindrical Shells,” Science in China Series G: Physics Mechanics and Astronomy, Vol. 51, No. 7, 2008, pp. 873-882. doi:10.1007/s11433-008-0091-9
[220] J. Li, Z. H. Xiang and M. D. Xue, “Buckling Analysis of Rotationally Periodic Laminated Composite Shells by a New Multilayered Shell Element,” Composite Structures, Vol. 70, No. 1, 2005, pp. 24-32. doi:10.1016/j.compstruct.2004.08.009
[221] A. H. Sofiyev, “Torsional Buckling of Cross-Ply Laminated Orthotropic Composite Cylindrical Shells Subject to Dynamic Loading,” European Journal of Mechanics—A/Solids, Vol. 22, No. 2003, pp. 943-951. doi:10.1016/S0997-7538(03)00090-1
[222] B. P. Patel, Y. Nath and K. K. Shukla, “Thermo-Elastic Buckling Characteristics of Angle-Ply Laminated Elliptical Cylindrical Shells,” Composite Structures, Vol. 77, No. 1, 2007, pp. 120-124. doi:10.1016/j.compstruct.2005.06.001
[223] M. W. Hilburger and J. H. Starnes Jr., “Effects of Imperfections of the Buckling Response of Composite Shells,” Thin-Walled Structures, Vol. 42, No. 3, 2004, pp. 369- 397. doi:10.1016/j.tws.2003.09.001
[224] R. Rickards, A. Chate and O. Ozolinch, “Analysis for Buckling and Vibrations of Composite Stiffened Shells and Plates,” Composite Structures, Vol. 51, No. 4, 2001, pp. 361-370. doi:10.1016/S0263-8223(00)00151-3
[225] H. S. Shen, “Thermal Postbuckling Analysis of Laminated Cylindrical Shells with Piezoelectric Actuators,” Composite Structures, Vol. 55, No. 1, 2002, pp. 13-22. doi:10.1016/S0263-8223(01)00128-3
[226] H. S. Shen, “Thermal Postbuckling Behavior of Anisotropic Laminated Cylindrical Shells with Temperature- Dependent Properties,” AIAA Journal, Vol. 46, No. 1, 2008, pp. 185-193. doi:10.2514/1.31192
[227] K. D. Kim, G. R. Lomboy and S. C. Han, “A Co-Rotational 8-Node Assumed Strain Shell Element for Postbuckling Analysis of Laminated Composite Plates and Shells,” Computational Mechanics, Vol. 30, No. 4, 2003, pp. 330-342. doi:10.1007/s00466-003-0415-6
[228] C. K. Kundu and P. K. Sinha, “Postbuckling Analysis of Laminated Composite Shells,” Composite Structures, Vol. 78, No. 3, 2007, pp. 316-324. doi:10.1016/j.compstruct.2005.10.005
[229] C. K. Kundu, D. K. Maiti and P. K. Sinha, “Postbuckling Analysis of Smart Laminated Doubly Curved Shells,” Composite Structures, Vol. 81, No. 3, 2007, pp. 314-322. doi:10.1016/j.compstruct.2006.08.023
[230] D. Xie and S. B. Biggers Jr., “Postbuckling Analysis with Progressive Damage Modeling in Tailored Laminated Plates and Shells with a Cutout,” Composite Structures, Vol. 59, No. 2, 2003, pp. 199-216. doi:10.1016/S0263-8223(02)00233-7
[231] E. Merazzi, R. Degenhardt and K. Rohwer, “Postbuckling Analysis of Composite Shell Structures toward Fast and Accurate Tools with Implicit FEM Methods,” International Journal of Structural Stability and Dynamics, Vol. 10, No. 4, 2010, pp. 941-947. doi:10.1142/S021945541000383X
[232] A. Z. Galishin, “Analysis of the Axisymmetric Thermoelastoplastic State of Branched Laminated Transversally Isotropic Shells,” International Applied Mechanics, Vol. 36, No. 4, 2000, pp. 538-544.
[233] M. A. Babeshko and Y. N. Shevchenko, “Axisymmetric Thermoelastoplastic Stress-Strain State of Transversely Isotropic Laminated Shells,” International Applied Mechanics, Vol. 42, No. 6, 2006, pp. 669-676. doi:10.1007/s10778-006-0134-8
[234] N. Y. Swamy and P. K. Sinha, “Nonlinear Transient Analysis of Laminated Composite Shells in Hygrothermal Environments,” Composite Structures, Vol. 72, No. 3, 2006, pp. 280-288. doi:10.1016/j.compstruct.2004.12.001
[235] M. E. Babeshko and Y. N. Shevchenko, “Thermoelastoplastic Stress-Strain State of Laminated Shells under Axisymmetric Loading along Arbitrary Plane Paths,” International Applied Mechanics, Vol. 38, No. 12, 2002, pp. 1464-1472. doi:10.1023/A:1023209808061
[236] Z. Q. Cheng and R. C. Batra, “Thermal Effects on Laminated Composite Shells Containing Interfacial Imperfections,” Composite Structures, Vol. 52, No. 1, 2001, pp. 3- 11. doi:10.1016/S0263-8223(00)00197-5
[237] D. Kewei, “Weak Formulation Study for Thermoelastic Analysis of Thick Open Laminated Shell,” Mechanics of Advanced Materials and Structures, Vol. 15, No. 1, 2008, pp. 33-39. doi:10.1080/15376490701410588
[238] A. Ghosh, “Hygrothermal Effects on the Initiation and Propagation of Damage in Composite Shells,” Aircraft Engineering & Aerospace Technology, Vol. 80, No. 4, 2008, pp. 386-399.
[239] G. C. Saha and A. L. Kalamkarov, “Micromechanical Thermoelastic Model for Sandwich Composite Shells Made of Generally Orthotropic Materials,” Journal of Sandwich Structures and Materials, Vol. 11, No. 1, 2009, pp. 27-56. doi:10.1177/1099636208098147
[240] A. A. El Damatty, A. S. Awadb and B. J. Vickery, “Thermal Analysis of FRP Chimneys Using Consistent Laminated Shell Element,” Thin-Walled Structures, Vol. 37, No. 1, 2000, pp. 57-76. doi:10.1016/S0263-8231(99)00041-5
[241] T. Roy, P. Manikandan and D. Chakraborty, “Improved Shell Finite Element for Piezothermoelastic Analysis of Smart Fiber Reinforced Composite Structures,” Finite Elements in Analysis and Design, Vol. 46, No. 9, 2010, pp. 710-720. doi:10.1016/j.finel.2010.03.009
[242] G. M. Kulikov and V. Plotnikova, “Solution of a Coupled Problem of Thermopiezoelectricity Based on a Geometrically Exact Shell Element,” Mechanics of Composite Materials, Vol. 46, No. 4, 2010, pp. 513-534. doi:10.1007/s11029-010-9152-z
[243] Z. Zhang, H. Chen and L. Ye, “Progressive Failure Analysis for Advanced Grid Stiffened Composite Plates/Shells,” Composite Structures, Vol. 86, No. 1-3, 2008, pp. 45-54. doi:10.1016/j.compstruct.2008.03.037
[244] G. Ikonomopoulos and D. Perreux, “Reliability of Composite Laminates through a Damage Tolerance Approach- Applications into Carbon-Epoxy and Glass-Epoxy Composite Shells,” Journal of Composite Materials, Vol. 35, No. 3, pp. 202-236.
[245] L. P. Khoroshun and D. V. Babich, “Stability of Plates and Shells Made of Homogeneous and Composite Materials Subject to Short-Term Microdamage,” International Applied Mechanics, Vol. 44, No. 3, 2008, pp. 239-267. doi:10.1007/s10778-008-0045-y
[246] V. V. Zozulya, “Laminated Shells with Debonding Between Laminas in Temperature Field,” International Applied Mechanics, Vol. 42, No. 7, 2006, pp. 842-848. doi:10.1007/s10778-006-0153-5
[247] R. Larsson, “A Discontinuous Shell-Interface Element for Delamination Analysis of Laminated Composite Structures,” Computer Methods in Applied Mechanics and Engineering, Vol. 193, No. 30-32, 2004, pp. 3173-3194. doi:10.1016/j.cma.2003.08.009
[248] E. Mahdi, B. B. Sahari, A. M. S. Hamouda and Y. A. Khalid, “An Experimental Investigation into Crushing Behaviour of Filament-Wound Laminated Cone-Cone Intersection Composite Shell,” Composite Structures, Vol. 51, No. 3, 2001, pp. 211-219. doi:10.1016/S0263-8223(00)00132-X
[249] C. H. Huang and Y. J. Lee, “Static Contact Crushing of Composite Laminated Shells,” Composite Structures, Vol. 63, No. 2, 2004, pp. 211-217. doi:10.1016/S0263-8223(03)00157-0
[250] W. Wagner and C. Balzani, “Simulation of Delamination in Stringer Stiffened Fiber-Reinforced Composite Shells,” Computers & Structures, Vol. 86, No. 9, 2008, pp. 930- 939. doi:10.1016/j.compstruc.2007.04.018
[251] E. V. Morozov, “Theoretical and Experimental Analysis of the Deformability of Filament Wound Composite Shells under Axial Compressive Loading,” Composite Struc- tures, Vol. 54, No. 2-3, 2001, pp. 255-260. doi:10.1016/S0263-8223(01)00095-2
[252] S. J. Hossain, P. K. Sinha and A. H. Sheikh, “A Finite Element Formulation for the Analysis of Laminated Composite Shells,” Computers & Structures, Vol. 82, No. 20- 21, 2004, pp. 1623-1638. doi:10.1016/j.compstruc.2004.05.004
[253] K. D. Kim, C. S. Lee and S. C. Han, “A 4-node Co- Rotational ANS Shell Element for Laminated Composite Structures,” Composite Structures, Vol. 80, No. 2, 2007, pp. 234-252. doi:10.1016/j.compstruct.2006.05.003
[254] K. Y. Szea, L. Q. Yaoa, T. H. H. Pian, “An Eighteen- Node Hybrid-Stress Solid-Shell Element for Homogenous and Laminated Structures,” Finite Elements in Analysis and Design, Vol. 38, No. 4, 2002, pp. 353-374. doi:10.1016/S0168-874X(01)00089-0
[255] J. Wu and R. Burguen, “An Integrated Approach to Shape and Laminate Stacking Sequence Optimization of Free- Form FRP Shells,” Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 33-36, 2006, pp. 4106-4123. doi:10.1016/j.cma.2005.07.015
[256] M. Balah and H. N. Al-Ghamedy, “Finite Element Formulation of a Third Order Laminated Finite Rotation Shell Element,” Computers & Structures, Vol. 80, No. 26, 2002, pp. 1975-1990. doi:10.1016/S0045-7949(02)00222-5
[257] V. M. Trach and A. V. Podvornyi, “Stability of Laminated Shells Made of Materials with One Plane of Elastic Symmetry,” International Applied Mechanics, Vol. 40, No. 5, 2004, pp. 573-579. doi:10.1023/B:INAM.0000037305.78333.21
[258] H. R. H. Kabir and K. Al-Shaleh, “Three-Node Triangular Element for Arbitrarily Laminated General Shells,” Composite Structures, Vol. 77, No. 1, 2007, pp. 18-29. doi:10.1016/j.compstruct.2005.05.013
[259] A. L. Kalamkarov, G. Duvaut and F. Lene, “A New Asymptotic Model of Flexible Composite Shells of a Regular Structure,” International Journal of Engineering Science, Vol. 40, No. 2002, pp. 333-343. doi:10.1016/S0020-7225(01)00065-9
[260] B. Haussya and J. F. Ganghoffer, “Modelling of Curved Interfaces in Composite Shells,” International Journal of Mechanical Sciences, Vol. 48, No. 11, 2006, pp. 1234- 1245. doi:10.1016/j.ijmecsci.2006.06.007
[261] C. M. C. Roque and A. J. M. Ferreira, “New Developments in the Radial Basis Functions Analysis of Composite Shells,” Composite Structures, Vol. 87, No. 2, 2009, pp. 141-150. doi:10.1016/j.compstruct.2008.05.011
[262] L. Ren and A. Parvizi-Majidi, “A Model for Shape Control of Cross-Ply Laminated Shells Using a Piezoelectric Actuator,” Journal of Composite Materials, Vol. 40, No. 2006, pp. 1271-1285. doi:10.1177/0021998305057437
[263] P. Bhattacharya, H. Suhail and P. K. Sinha, “Finite Element Analysis and Distributed Control of Laminated Com- posite Shells Using LQR/IMSC Approach,” Aerospace Science and Technology, Vol. 6, No. 2002, pp. 273-281. doi:10.1016/S1270-9638(02)01159-8
[264] A. Zallo and P. Gaudenzi, “Finite Element Models for Laminated Shells with Actuation Capability,” Computers & Structures, Vol. 81, No. 8-11, 2003, pp. 1059-1069. doi:10.1016/S0045-7949(03)00002-6
[265] I. F. Pinto Correia, C. M. Mota Soares, C. A. Mota Soares and J. Herskovits, “Analysis of Adaptive Shell Structures Using a Refined Laminated Model,” Composite Structures, Vol. 66, No. 1-4, 2004, pp. 261-268. doi:10.1016/j.compstruct.2004.04.047
[266] P. Bhattacharya, H. Suhail and P. K. Sinha, “Smart Laminated Shells and Deflection Control Strategy with Optimal Voltage,” Journal of Reinforced Plastics and Composites, Vol. 19, No. 16, 2000, pp. 1293-1316. doi:10.1106/H2WR-TRYC-LNDF-7BM5
[267] Q. Xue, “Effective Dielectric Constant of Composite with Interfacial Shells,” Physica B: Condensed Matter, Vol. 344, No. 1-4, 2004, pp. 129-132. doi:10.1016/j.physb.2003.05.001
[268] A. Picha. J. Haina, Y. Protsb and H. J. Adler, “Composite Polymeric Particles with ZnS Shells,” Polymer, Vol. 46, No. 19, 2005, pp. 7931-7944. doi:10.1016/j.polymer.2005.06.062
[269] Z. Yan, C. P. Pantelides and L. D. Reaveley, “Post-ten- sioned FRP Composite Shells for Concrete Confinement,” Journal of Composites for Construction, Vol. 11, No. 1, 2007, pp. 81-90. doi:10.1061/(ASCE)1090-0268(2007)11:1(81)
[270] R. Lopez-Anido, A. P. Michael, T. C. Sandford and B. Goodell, “Repair of Wood Piles Using Prefabricated Fiber-Reinforced Polymer Composite Shells,” Journal of Performance of Constructed Facilities, Vol. 19, No. 1, 2005, pp. 78-87. doi:10.1061/(ASCE)0887-3828(2005)19:1(78)
[271] D. R. Ambur and N. Jaunky, “Optimal Design of Grid- Stiffened Panels and Shells with Variable Curvature,” Composite Structures, Vol. 52, No. 2, 2001, pp. 173-180. doi:10.1016/S0263-8223(00)00165-3
[272] D. Bushnell, “Global Optimum Design of Externally Pres- surized Isogrid Stiffened Cylindrical Shells with Added T-Rings,” International Journal of Non-Linear Mechanics, Vol. 37, No. 4-5, 2002, pp. 801-837. doi:10.1016/S0020-7462(01)00100-7
[273] T. D. Kim, “Postbuckled Behavior of Composite Isogrid Stiffened Shell Structure,” Advanced Composite Materials, Vol. 9, No.3, 2000, pp. 253-263.
[274] T. Zeng and L. Wu, “Post-buckling Analysis of Stiffened Braided Cylindrical Shells under Combined External Pressure and Axial Compression,” Composite Structures, Vol. 60, No. 4, 2003, pp. 455-466. doi:10.1016/S0263-8223(03)00018-7
[275] D. Poorveis and M. Z. Kabir, “Buckling of Discretely Stringer-Stiffened Composite Cylindrical Shells under Combined Axial Compression and External Pressure,” Scientia Iranica, Vol. 13, No. 2, 2006, pp. 113-123.
[276] T. Mocker and H. G. Reimerdes, “Load Carrying Capability of Stringer Stiffened Curved Composite Panels in the Postbuckling Region,” Proceedings of the European Conference on Spacecraft Structures, Materials and Mechanical Testing 2005 (ESA SP-581), Noordwijk, 10-12 May 2005, p. 1077.
[277] C. Bisagni and P. Cordisco, “Testing of Stiffened Composite Cylindrical Shells in the Postbuckling Range until Failure,” AIAA Journal, Vol. 42, No. 9, 2004, pp. 1806- 1817. doi:10.2514/1.6088
[278] C. Bisagni and P. Cordisco, “Post-Buckling and Collapse Experiments of Stiffened Composite Cylindrical Shells Subjected to Axial Loading and Torque,” Composite Structures, Vol. 73, No. 2, 2006, pp. 138-149. doi:10.1016/j.compstruct.2005.11.055
[279] K. P. Rao, “Study of the Behaviour of Laminated Composite Beam, Plate and Shell Structures Using Some Specifically Developed Finite Elements,” Journal of Spacecraft Technology, Vol. 10, No. 2, 2000, pp. 1-13.
[280] R. Bai, M. Wang and H. Chen, “Buckling Behavior of Composite AGS with Delamination,” Acta Materiae Compositae Sinica, Vol. 22, No. 4, 2005, pp. 136-141.
[281] S. Kidane, G. Li and J. Helms, S. S. Pang and E. Woldesenbet, “Buckling Load Analysis of Grid Stiffened Composite Cylinders,” Composites Part B: Engineering, Vol. 34, No. 1, 2003, pp. 1-9. doi:10.1016/S1359-8368(02)00074-4
[282] J. De Vries, “Analysis of Localized Buckling of Cylindrical Shell Using a Hierarchical Approach,” AIAA, Vol. 11, 2006, p. 8061.
[283] A. F. Accardo, F. Ricci, D. Lucariello, P. Polese, B. Leone, D. Cozzolino and F. S. Palmiero, “Design of a Combined Loads Machine for Tests on Fuselage Barrels and Curved Panels,” AIAA, Vol. 2, 2004, p. 1249.
[284] P. Linde, A. Schulz and W. Rust, “Influence of Modelling and Solution Methods on the FE-Simulation of the Post- Buckling Behaviour of Stiffened Aircraft Fuselage Panels,” Composite Structures, Vol. 73, No. 2, 2006, pp. 229- 236. doi:10.1016/j.compstruct.2005.11.048
[285] S. N. Patel, P. K. Datta and A. H. Sheikh, “Dynamic Instability Analysis of Laminated Composite Stiffened Shell Panels Subjected to In-Plane Harmonic Edge Loading,” Structural Engineering & Mechanics, Vol. 22, No. 4, 2006, pp. 483-510.
[286] R. Rikards, H. Abramovich, K. Kalnins and J. Auzins, “Surrogate Modeling in Design Optimization of Stiffened Composite Shells,” Composite Structures, Vol. 73, No. 2, 2006, pp. 244-251. doi:10.1016/j.compstruct.2005.11.046
[287] H. T. Wong and J. G. Teng, “Buckling Behaviour of Model Steel Base Shells of the Comshell Roof System,” Journal of Constructional Steel Research, Vol. 62, No. 1-2, 2006, pp. 4-19. doi:10.1016/j.jcsr.2005.04.015
[288] A. Apicella, E. Armentani, R. Esposito and M. Pirozzi, “Finite Element Analysis of a Composite Bulkhead Structure,” Key Engineering Materials, Vol. 348-349, 2007, pp. 348-349,553.
[289] N. Z. Chen and C. G. Soares, “Longitudinal Strength Analysis of Ship Hulls of Composite Materials under Sagging Moments,” Composite Structures, Vol. 77, No. 1, 2007, pp. 36-44. doi:10.1016/j.compstruct.2005.06.002
[290] M. Rais-Rohani and J. Lokits, “Reinforcement Layout and Sizing Optimization of Composite Submarine Sail Structures,” Structural and Multidisciplinary Optimization, Vol. 34, No. 1, 2007, pp. 75-90. doi:10.1007/s00158-006-0066-2
[291] D. Wu, Y. Xu and Q. Wan, “Global Buckling Load Analysis of Grid Stiffened Composite Panels,” Acta Materiae Compositae Sinica, Vol. 24, No. 2, 2007, pp. 168- 172.
[292] H.-R. Chen, B.-H. Zhou and R.-X. Bai, “Thermal-Mechanical Buckling Behavior of Advanced Composite Grid Stiffened Shell with Multi-Delaminations,” Mechanical Engineers, Vol. 25, No. 8, 2008, pp. 58-63.
[293] W. Chen and X. Xu, “Buckling and Postbuckling Response Analysis of the Doubly-Curved Composite Shell by Nonlinear FEM,” Acta Materiae Compositae Sinica, Vol. 25, No. 2, 2008, pp. 178-187.
[294] B. G. Prusty, “Free Vibration and Buckling Response of Hat-Stiffened Composite Panels under General Loading,” International Journal of Mechanical Sciences, Vol. 50, No. 8, 2008, pp. 1326-1333. doi:10.1016/j.ijmecsci.2008.03.003
[295] S. Sahoo and D. Chakravorty, “Bending of Composite Stiffened Hypar Shell Roofs under Point Load,” Journal of Engineering Mechanics, Vol. 134, No. 6, 2008, pp. 441-454. doi:10.1061/(ASCE)0733-9399(2008)134:6(441)
[296] Z. F. Zhang, H. R. Chen and R. X. Bai, “Stability Analysis of Advanced Composite Grid Stiffened Cylindrical Shell,” Journal of Dalian University of Technology, Vol. 48, No. 5, 2008, pp. 631-640.
[297] W. Lu, Y. Ma, W. Liang and Z. Lu, “Analysis System of Stability and Strength for Airframe Composite Stiffened Plate/Shell,” Acta Aero Astr Sinica, Vol. 30, No. 5, 2009, p. 895.
[298] J. X. He, G. Q. He, M-F. Ren and X. Hou, “Buckling Load Analysis of Composite Grid Stiffened Structure Skirts,” Journal of Solid Rocket Technology, Vol. 32, No. 3, 2009, p. 331.
[299] R. Zahari and A. El-Zafrany, “Progressive Failure Analysis of Composite Laminated Stiffened Plates Using the Finite Strip Method,” Composite Structures, Vol. 87, No. 1, 2009, pp. 63-70. doi:10.1016/j.compstruct.2007.12.006
[300] M. W. Hilburger, “Buckling and Failure of Compression- Loaded Composite Laminated Shells with Cutouts,” AIAA, Vol. 6, 2007, p. 6366.
[301] J. Li, Z. H. Xiang and M. D. Xue, “Three-Dimensional Finite Element Buckling Analysis of Honeycomb Sandwich Composite Shells with Cutouts,” Computers, Materials & Continua, Vol. 2, No. 1, 2005, pp. 139-150.
[302] E. Madenci and A. Barut, “The Influence of Geometric Irregularities on the Linear Buckling of Cylindrical Shells with an Elliptic Cutout,” 44th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference, Reston, 2003, p. 1929
[303] N. Nanda and J. N. Bandyopadhyay, “Nonlinear Transient Response of Laminated Composite Shells,” Journal of Engineering Mechanics, Vol. 134, No. 11, 2008, pp. 983-991. doi:10.1061/(ASCE)0733-9399(2008)134:11(983)
[304] E. Asadi, A. R. Farrahi and S. J. Fariborz, “Mixed Mode Axisymmetric Annular Cracks in a Finite Layer: Off Angle Crack Initiation,” Theoretical and Applied Fracture Mechanics, Vol. 56, No. 2, 2011, pp. 112-121. doi:10.1016/j.tafmec.2011.10.007
[305] J. J. H. Starnes, M. W. Hilburger and M. P. Nemeth, “The Effects of Initial Imperfections on the Buckling of Composite Cylindrical Shells,” In: P. Grant and C. Q. Rousseau, Eds., Composite Structures: Theory and Practice, ASTM STP1383, American Society for Testing and Materials, 2000, pp. 529-550
[306] J. Arbocz and M. W. Hilburger, “Towards a Probabilistic Preliminary Design Criterion for Buckling Critical Composite Shells,” AIAA Journal, Vol. 43, No. 8, 2003, pp. 1823-1827.
[307] M. Biagi and P. Perugini, “Nonlinear Analysis of the Vega Launcher First Stage Composite Skirts with Geometrical Imperfections,” 48th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference, Hawaii, 2007.
[308] C. Bisagni, “Numerical Analysis and Experimental Correlation of Composite Shell Buckling and Post-Buckling,” Composites Part B: Engineering, Vol. 31, No. 8, 2000, pp. 655-667. doi:10.1016/S1359-8368(00)00031-7
[309] V. Carvelli, N. Panzeri and C. Poggi, “Buckling Strength of GFRP Under-Water Vehicles,” Composites Part B: Engineering, Vol. 32, No. 2, 2001, pp. 89-101. doi:10.1016/S1359-8368(00)00063-9
[310] V. Carvelli, N. Panzeri and C. Poggi, “Effects of Material Failure on Buckling Behaviour of Medium-Thick GFRP Cylindrical Shells for Submarine Applications,” ASME Applied Mechanics Division, Vol. 248, 2001, pp. 81-94.
[311] M. N. Hilburger and J. H. Starnes Jr., “High-Fidelity Nonlinear Analysis of Compression-Loaded Composite Shells,” Proceedings of the 42nd AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference, Seattle, 2001, p. 1394.
[312] M. W. Hilburger and J. H. Starnes Jr., “Effects of Imperfections on the Buckling Response of Compression-Load ed Composite Shells,” Proceedings of the 41st AIAA/ ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference, Atlanta, 2000, p. 1387.
[313] S. A. Jayachandran, V. Kalyanaraman and R. Narayanan, “Marguerre Shell Type Secant Matrices for the Postbuckling Analysis of Thin, Shallow Composite Shells,” Structural Engineering & Mechanics, Vol. 18, 2004, pp. 41- 58.
[314] A. Tafreshi and C. G. Bailey, “Instability of Imperfect Composite Cylindrical Shells under Combined Loading,” Composite Structures, Vol. 80, No. 1, 2007, pp. 49-64. doi:10.1016/j.compstruct.2006.02.031
[315] B. L. Wardle, P. A. Lagace, “Bifurcation, Limit-Point Buckling, and Dynamic Collapse of Transversely Loaded Composite Shells,” AIAA Journal, Vol. 38, No. 3, 2000, pp. 507-516. doi:10.2514/2.989

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.