Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene

Abstract

Electrochemical capacitors, which can store large amount of electrical energy with the capacitance of thousands of Farads, have recently been attracting enormous interest and attention. Carbon nanostructures such as carbon nanotubes and graphene are considered as the potentially revolutionary energy storage materials due to their excellent properties. This paper is focused on the application of carbon nanostructures in electrochemical capacitors, giving an overview regarding the basic mechanism, design, fabrication and achievement of latest research progresses for electrochemical capacitors based on carbon nanotubes, graphene and their composites. Their current challenges and future prospects are also discussed.

Share and Cite:

J. Li, X. Cheng, A. Shashurin and M. Keidar, "Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene," Graphene, Vol. 1 No. 1, 2012, pp. 1-13. doi: 10.4236/graphene.2012.11001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. Simon and Y. Gogotsi, “Materials for Electrochemical Capacitors,” Nature Materials, Vol. 7, No. 11, 2008, pp. 845-854. doi:10.1038/nmat2297
[2] M. Winter and R. J. Brodd, “What Are Batteries, Fuel Cells, and Supercapacitors?” Chemical Reviews, Vol. 104, No. 10, 2004, pp. 4245-4269. doi:10.1021/cr020730k
[3] L. L. Zhang and X. S. Zhao, “Carbon-Based Materials as Supercapacitor Electrodes,” Chemical Society Reviews, Vol. 38, No. 9, 2009, pp. 2520-2531. doi:10.1039/b813846j
[4] Y. P. Zhai, Y. Q. Dou, D. Y. Zhao, P. F. Fulvio, R. T. Mayes and S. Dai, “Carbon Materials for Chemical Capacitive Energy Storage,” Advanced Materials, Vol. 23, No. 42, 2011, pp. 4828-4850. doi:10.1002/adma.201100984
[5] A. Burke, “R&D Considerations for the Performance and Application of Electrochemical Capacitors,” Electrochimica Acta, Vol. 53, No. 3, 2007, pp. 1083-1091. doi:10.1016/j.electacta.2007.01.011
[6] R. Kotz and M. Carlen, “Principles and Applications of Electrochemical Capacitors,” Electrochimica Acta, Vol. 45, No. 15-16, 2000, pp. 2483-2498. doi:10.1016/S0013-4686(00)00354-6
[7] J. R. Miller and P. Simon, “Electrochemical Capacitors for Energy Management,” Science, Vol. 321, No. 5889, 2008, pp. 651-652. doi:10.1126/science.1158736
[8] D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Ha-yamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura and S. Iijima, “Shape-Engineerable and Highly Densely Packed Single-Walled Carbon Nanotubes and Their Ap- plication as Super-Capacitor Electrodes,” Nature Materi- als, Vol. 5, No. 12, 2006, pp. 987-994. doi:10.1038/nmat1782
[9] J. Liu, G. Z. Cao, Z. G. Yang, D. H. Wang, D. Dubois, X. D. Zhou, G. L. Graff, L. R. Pederson and J. G. Zhang, “Oriented Nanostructures for Energy Conversion and Storage,” ChemSusChem, Vol. 1, No. 8-9, 2008, pp. 676- 697. doi:10.1002/cssc.200800087
[10] A. Du Pasquier, I. Plitz, S. Menocal and G. Amatucci, “A Comparative Study of Li-Ion Battery, Supercapacitor and Nonaqueous Asymmetric Hybrid Devices for Automotive Applications,” Journal of Power Sources, Vol. 115, No. 1, 2003, pp. 171-178. doi:10.1016/S0378-7753(02)00718-8
[11] B. E. Conway, “Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications,” Kluwer-Plenum, New York, 1999.
[12] J. M. Miller, “Ultracapacitor Applications,” The Institution of Engineering and Technology, Stevenage, 2011.
[13] H. L. Wang, J. T. Robinson, G. Diankov and H. J. Dai, “Nanocrystal Growth on Graphene with Various Degrees of Oxidation,” Journal of the American Chemical Society, Vol. 132, No. 10, 2010, pp. 3270-3271. doi:10.1021/ja100329d
[14] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, No. 6348, 1991, pp. 56-58. doi:10.1038/354056a0
[15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, No. 5696, 2004, pp. 666-669. doi:10.1126/science.1102896
[16] E. Frackowiak and F. Beguin, “Carbon Materials for the Electrochemical Storage of Energy in Capacitors,” Carbon, Vol. 39, No. 6, 2001, pp. 937-950. doi:10.1016/S0008-6223(00)00183-4
[17] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi and T. Thio, “Electrical Conductivity of Individual Carbon Nanotubes,” Nature, Vol. 382, No. 6586, 1996, pp. 54-56. doi:10.1038/382054a0
[18] Y. Wang, Z. Q. Shi, Y. Huang, Y. F. Ma, C. Y. Wang, M. M. Chen and Y. S. Chen, “Supercapacitor Devices Based on Graphene Materials,” Journal of Physical Chemistry C, Vol. 113, No. 30, 2009, pp. 13103-13107. doi:10.1021/jp902214f
[19] H. V. Helmholtz, “Ueber einige Gesetze der Vertheilung elektrischer Str?me in korperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche,” Annalen der Physik, Vol. 165, No. 6, 1853, pp. 211-233. doi:10.1002/andp.18531650603
[20] O. Barbieri, M. Hahn, A. Herzog and R. Kotz, “Capacitance Limits of High Surface Area Activated Carbons for Double Layer Capacitors,” Carbon, Vol. 43, No. 6, 2005, pp. 1303-1310. doi:10.1016/j.carbon.2005.01.001
[21] E. Raymundo-Pinero, K. Kierzek, J. Machnikowski and F. Beguin, “Relationship between the Nanoporous Texture of Activated Carbons and Their Capacitance Properties in Different Electrolytes,” Carbon, Vol. 44, No. 12, 2006, pp. 2498-2507. doi:10.1016/j.carbon.2006.05.022
[22] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, “Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984),” Pure and Applied Chemistry, Vol. 57, No. 4, 1985, pp. 603-619. doi:10.1351/pac198557040603
[23] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon and P. L. Taberna, “Anomalous Increase in Carbon Capacitance at Pore Sizes Less than 1 Nanometer,” Science, Vol. 313, No. 5794, 2006, pp. 1760-1763. doi:10.1126/science.1132195
[24] J. S. Huang, B. G. Sumpter and V. Meunier, “A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon Materials, and Electrolytes,” Chemistry—A European Journal, Vol. 14, No. 22, 2008, pp. 6614-6626. doi:10.1002/chem.200800639
[25] J. S. Huang, B. G. Sumpter and V. Meunier, “Theoretical model for Nanoporous Carbon Supercapacitors,” Angewandte Chemie-International Edition, Vol. 47, No. 3, 2008, pp. 520-524. doi:10.1002/anie.200703864
[26] N. L. Wu, “Nanocrystalline Oxide Supercapacitors,” Materials Chemistry and Physics, Vol. 75, No. 1-3, 2002, pp. 6-11. doi:10.1016/S0254-0584(02)00022-6
[27] X. P. Dong, W. H. Shen, J. L. Gu, L. M. Xiong, Y. F. Zhu, Z. Li and J. L. Shi, “MnO2-Embedded-in-Mesoporous-Carbon-Wall Structure for Use as Electrochemical Capacitors,” Journal of Physical Chemistry B, Vol. 110, No. 12, 2006, pp. 6015-6019. doi:10.1021/jp056754n
[28] J. P. Zheng, P. J. Cygan and T. R. Jow, “Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors,” Journal of the Electrochemical Society, Vol. 142, No. 8, 1995, pp. 2699-2703. doi:10.1149/1.2050077
[29] C. C. Hu, K. H. Chang, M. C. Lin and Y. T. Wu, “Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors,” Nano Letters, Vol. 6, No. 12, 2006, pp. 2690-2695. doi:10.1021/nl061576a
[30] T. Brezesinski, J. Wang, S. H. Tolbert and B. Dunn, “Ordered Mesoporous Alpha-MoO3 with Iso-Oriented Nanocrystalline Walls for Thin-Film Pseudocapacitors,” Na- ture Materials, Vol. 9, No. 2, 2010, pp. 146-151. doi:10.1038/nmat2612
[31] S. L. Xiong, C. Z. Yuan, M. F. Zhang, B. J. Xi and Y. T. Qian, “Controllable Synthesis of Mesoporous Co3O4 Nanostructures with Tunable Morphology for Application in Supercapacitors,” Chemistry—A European Journal, Vol. 15, No. 21, 2009, pp. 5320-5326. doi:10.1002/chem.200802671
[32] S. Boukhalfa, K. Evanoff and G. Yushin, “Atomic Layer Deposition of Vanadium Oxide on Carbon Nanotubes for High-Power Supercapacitor Electrodes,” Energy & Environmental Science, Vol. 5, No. 5, 2012, pp. 6872-6879. doi:10.1039/C2EE21110F
[33] V. Subramanian, H. W. Zhu and B. Q. Wei, “Nanostructured MnO2: Hydrothermal Synthesis and Electrochemical Properties as a Supercapacitor Electrode Material,” Journal of Power Sources, Vol. 159, No. 1, 2006, pp. 361-364. doi:10.1016/j.jpowsour.2006.04.012
[34] Y. T. Wang, A. H. Lu, H. L. Zhang and W. C. Li, “Syn- thesis of Nanostructured Mesoporous Manganese Oxides with Three-Dimensional Frameworks and Their Application in Supercapacitors,” Journal of Physical Chemistry C, Vol. 115, No. 13, 2011, pp. 5413-5421. doi:10.1021/jp110938x
[35] H. Y. Lee and J. B. Goodenough, “Supercapacitor Behavior with KCl Electrolyte,” Journal of Solid State Chemistry, Vol. 144, No. 1, 1999, pp. 220-223. doi:10.1006/jssc.1998.8128
[36] A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J. P. Ferraris, “Conducting Polymers as Active Materials in Electrochemical Capacitors,” Journal of Power Sources, Vol. 47, No. 1-2, 1994, pp. 89-107. doi:10.1016/0378-7753(94)80053-7
[37] K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin and E. Frackowiak, “Supercapacitors from Nanotubes/Polypyrrole Composites,” Chemical Physics Letters, Vol. 347, No. 1-3, 2001, pp. 36-40. doi:10.1016/S0009-2614(01)01037-5
[38] H. Y. Mi, X. G. Zhang, X. G. Ye and S. D. Yang, “Preparation and Enhanced Capacitance of Core-Shell Polypyrrole/Polyaniline Composite Electrode for Supercapacitors,” Journal of Power Sources, Vol. 176, No. 1, 2008, pp. 403-409.
doi:10.1016/j.jpowsour.2007.10.070
[39] Y. G. Wang, H. Q. Li and Y. Y. Xia, “Ordered Whisker-like Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance,” Advanced Materials, Vol. 18, No. 19, 2006, pp. 2619-2623. doi:10.1002/adma.200600445
[40] H. Y. Mi, X. G. Zhang, S. Y. An, X. G. Ye and S. D. Yang, “Microwave-Assisted Synthesis and Electrochemical Capacitance of Polyaniline/Multi-Wall Carbon Nanotubes Composite,” Electrochemistry Communications, Vol. 9, No. 12, 2007, pp. 2859-2862. doi:10.1016/j.elecom.2007.10.013
[41] L. Chen, C. Z. Yuan, H. Dou, B. Gao, S. Y. Chen, X. G. Zhang, “Synthesis and Electrochemical Capacitance of Core-Shell Poly(3,4-ethylenedioxythiophene)/Poly(Sodium 4-Styrenesulfonate)-Modified Multiwalled Carbon Nanotube Nanocomposites,” Electrochimica Acta, Vol. 54, No. 8, 2009, pp. 2335-2341. doi:10.1016/j.electacta.2008.10.071
[42] K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae and Y. H. Lee, “High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole,” Journal of the Electrochemical Society, Vol. 149, No. 8, 2002, pp. A1058-A1062. doi:10.1149/1.1491235
[43] C. Arbizzani, M. Mastragostino and F. Soavi, “New Trends in Electrochemical Supercapacitors,” Journal of Power Sources, Vol. 100, No. 1-2, 2001, pp. 164-170. doi:10.1016/S0378-7753(01)00892-8
[44] E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota and F. Beguin, “Supercapacitors Based on Conducting Polymers/Nanotubes Composites,” Journal of Power Sources, Vol. 153, No. 2, 2006, pp. 413-418. doi:10.1016/j.jpowsour.2005.05.030
[45] K. V. E. Frackowiak and F. Beguin, “Determination of the Specific Capacitance of Conducting Polymer/Nanotubes Composite Electrodes Using Different Cell Configurations,” Electrochimica Acta, Vol. 50, No. 12, 2005, pp. 2499-2506. doi:10.1016/j.electacta.2004.10.078
[46] M. D. Stoller and R. S. Ruoff, “Best Practice Methods for Determining an Electrode Material’s Performance for Ultracapacitors,” Energy & Environmental Science, Vol. 3, No. 9, 2010, pp. 1294-1301. doi:10.1039/C0EE00074D
[47] Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard and A. G. Rinzler, “Transparent, Conductive Carbon Nanotube Films,” Science, Vol. 305, No. 5688, 2004, pp. 1273-1276. doi:10.1126/science.1101243
[48] B. Dan, G. C. Irvin and M. Pasquali, “Continuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films,” ACS Nano, Vol. 3, No. 4, 2009, pp. 835-843. doi:10.1021/nn8008307
[49] A. R. Boccaccini, J. Cho, J. A. Roether, B. J. C. Thomas, E. J. Minay and M. S. P. Shaffer, “Electrophoretic Deposition of Carbon Nanotubes,” Carbon, Vol. 44, No. 15, 2006, pp. 3149-3160. doi:10.1016/j.carbon.2006.06.021
[50] D. H. Zhang, K. Ryu, X. L. Liu, E. Polikarpov, J. Ly, M. E. Tompson and C. W. Zhou, “Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes,” Nano Letters, Vol. 6, No. 9, 2006, pp. 1880-1886. doi:10.1021/nl0608543
[51] H. Gu and T. M. Swager, “Fabrication of Free-Standing, Conductive, and Transparent Carbon Nanotube Films,” Advanced Materials, Vol. 20, No. 23, 2008, pp. 4433-4437. doi:10.1002/adma.200801062
[52] K. Flavin, I. Kopf, E. Del Canto, C. Navio, C. Bittencourt and S. Giordani, “Controlled Carboxylic Acid Introduction: A Route to Highly Purified Oxidised Single-Walled Carbon Nanotubes,” Journal of Materials Chemistry, Vol. 21, No. 44, 2011, pp. 17881-17887. doi:10.1039/c1jm12217g
[53] J. Ge, G. H. Cheng and L. W. Chen, “Transparent and Flexible Electrodes and Supercapacitors Using Polyaniline/Single-Walled Carbon Nanotube Composite Thin Films,” Nanoscale, Vol. 3, No. 8, 2011, pp. 3084-3088. doi:10.1039/c1nr10424a
[54] L. B. Hu, D. S. Hecht and G. Gruner, “Carbon Nanotube Thin Films: Fabrication, Properties, and Applications,” Chemical Reviews, Vol. 110, No. 10, 2010, pp. 5790-5844. doi:10.1021/cr9002962
[55] C. M. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent, “High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes,” Applied Physics Letters, Vol. 70, No. 11, 1997, pp. 1480-1482. doi:10.1063/1.118568
[56] K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee, D. C. Chung, D. J. Bae, S. C. Lim and Y. H. Lee, “Supercapacitors Using Single-Walled Carbon Nanotube Electrodes,” Advanced Materials, Vol. 13, No. 7, 2001, pp. 497-500. doi:10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H
[57] T. Kitano, Y. Maeda and T. Akasaka, “Preparation of Transparent and Conductive Thin Films of Carbon Nanotubes Using a Spreading/Coating Technique,” Carbon, Vol. 47, No. 15, 2009, pp. 3559-3565. doi:10.1016/j.carbon.2009.08.027
[58] L. B. Hu, H. Wu and Y. Cui, “Printed Energy Storage Devices by Integration of Electrodes and Separators into Single Sheets of Paper,” Applied Physics Letters, Vol. 96, No. 18, 2010, Article ID: 183502. doi:10.1063/1.3425767
[59] L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui and Y. Cui, “Highly Conductive Paper for Energy-Storage Devices,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 51, 2009, pp. 21490-21494. doi:10.1073/pnas.0908858106
[60] J. Cho, K. Konopka, K. Rozniatowski, E. Garcia-Lecina, M. S. P. Shaffer and A. R. Boccaccini, “Characterisation of Carbon Nanotube Films Deposited by Electrophoretic Deposition,” Carbon, Vol. 47, No. 1, 2009, pp. 58-67. doi:10.1016/j.carbon.2008.08.028
[61] S. F. Pei, J. H. Du, Y. Zeng, C. Liu and H. M. Cheng, “The Fabrication of a Carbon Nanotube Transparent Conductive Film by Electrophoretic Deposition and Hot-Pressing Transfer,” Nanotechnology, Vol. 20, No. 23, 2009, Article ID: 235707.
[62] C. S. Du and N. Pan, “High Power Density Supercapacitor Electrodes of Carbon Nanotube Films by Electrophoretic Deposition,” Nanotechnology, Vol. 17, No. 21, 2006, pp. 5314-5318. doi:10.1088/0957-4484/17/21/005
[63] S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. J. Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science, Vol. 283, No. 5401, 1999, pp. 512-514. doi:10.1126/science.283.5401.512
[64] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura and S. Iijima, “Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes,” Ab- stracts of Papers of the American Chemical Society, Vol. 229, No. 5700, 2005, pp. U967-U967. doi:10.1126/science.1104962
[65] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. J. Dai, “Synthesis of Individual Single-Walled Carbon Nanotubes on Patterned Silicon Wafers,” Nature, Vol. 395, No. 6705, 1998, pp. 878-881. doi:10.1038/27632
[66] A. Ural, Y. M. Li and H. J. Dai, “Electric-Field-Aligned Growth of Single-Walled Carbon Nanotubes on Surfaces,” Applied Physics Letters, Vol. 81, No. 18, 2002, pp. 3464-3466. doi:10.1063/1.1518773
[67] S. Han, X. L. Liu and C. W. Zhou, “Template-Free Direc-tional Growth of Single-Walled Carbon Nanotubes on a- and r-Plane Sapphire,” Journal of the American Chemical Society, Vol. 127, No. 15, 2005, pp. 5294-5295. doi:10.1021/ja042544x
[68] S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin and J. A. Rogers, “High-Performance Electronics Using Dense, Perfectly Aligned Arrays of Single-Walled Carbon Nanotubes,” Nature Nanotechnology, Vol. 2, No. 4, 2007, pp. 230-236. doi:10.1038/nnano.2007.77
[69] R. N. Das, B. Liu, J. R. Reynolds and A. G. Rinzler, “Engineered Macroporosity in Single-Wall Carbon Nanotube Films,” Nano Letters, Vol. 9, No. 2, 2009, pp. 677-683. doi:10.1021/nl803168s
[70] A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D. N. Futaba, H. Hatori, M. Yumura, S. Iijima and K. Hata, “Extracting the Full Potential of Single-Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density,” Advanced Materials, Vol. 22, No. 35, 2010, pp. E235- E241. doi:10.1002/adma.200904349
[71] B. Kim, H. Chung and W. Kim, “High-Performance Supercapacitors Based on Vertically Aligned Carbon Nanotubes and Nonaqueous Electrolytes,” Nanotechnology, Vol. 23, No. 15, 2012, Article ID: 155401. doi:10.1088/0957-4484/23/15/155401
[72] M. Toupin, T. Brousse and D. Belanger, “Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor,” Chemistry of Materials, Vol. 16, No. 16, 2004, pp. 3184-3190. doi:10.1021/cm049649j
[73] X. Zhao, C. Johnston and P. S. Grant, “A Novel Hybrid Supercapacitor with a Carbon Nanotube Cathode and an Iron Oxide/Carbon Nanotube Composite Anode,” Journal of Materials Chemistry, Vol. 19, No. 46, 2009, pp. 8755- 8760. doi:10.1039/b909779a
[74] R. F. Zhou, C. Z. Meng, F. Zhu, Q. Q. Li, C. H. Liu, S. S. Fan and K. L. Jiang, “High-Performance Supercapacitors Using a Nanoporous Current Collector Made from Super-Aligned Carbon Nanotubes,” Nanotechnology, Vol. 21, No. 34, 2010, Article ID: 345701. doi:10.1088/0957-4484/21/34/345701
[75] S. L. Chou, J. Z. Wang, S. Y. Chew, H. K. Liu and S. X. Dou, “Electrodeposition of MnO2 Nanowires on Carbon Nanotube Paper as Free-Standing, Flexible Electrode for Supercapacitors,” Electrochemistry Communications, Vol. 10, No. 11, 2008, pp. 1724-1727. doi:10.1016/j.elecom.2008.08.051
[76] P. C. Chen, G. Z. Shen, Y. Shi, H. T. Chen and C. W. Zhou, “Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal- Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes,” Acs Nano, Vol. 4, No. 8, 2010, pp. 4403-4411. doi:10.1021/nn100856y
[77] M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An and R. S. Ruoff, “Graphene-Based Ultracapacitors,” Nano Letters, Vol. 8, No. 10, 2008, pp. 3498-3502. doi:10.1021/nl802558y
[78] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano, Vol. 2, No. 3, 2008, pp. 463-470. doi:10.1021/nn700375n
[79] O. Volotskova, I. Levchenko, A. Shashurin, Y. Raitses, K. Ostrikov and M. Keidar, “Single-Step Synthesis and Magnetic Separation of Graphene and Carbon Nanotubes in Arc Discharge Plasmas,” Nanoscale, Vol. 2, No. 10, 2010, pp. 2281-2285. doi:10.1039/c0nr00416b
[80] M. Eizenberg and J. M. Blakely, “Carbon Monolayer Phase Condensation on Ni(111),” Surface Science, Vol. 82, No. 1, 1979, pp. 228-236. doi:10.1016/0039-6028(79)90330-3
[81] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, Vol. 324, No. 5932, 2009, pp. 1312-1314. doi:10.1126/science.1171245
[82] S. Stankovich, R. D. Piner, S. T. Nguyen and R. S. Ruoff, “Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets,” Carbon, Vol. 44, No. 15, 2006, pp. 3342-3347. doi:10.1016/j.carbon.2006.06.004
[83] A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Large Area, Few- Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition,” Nano Letters, Vol. 9, No. 1, 2009, pp. 30-35. doi:10.1021/nl801827v
[84] M. J. Allen, V. C. Tung and R. B. Kaner, “Honeycomb Carbon: A Review of Graphene,” Chemical Reviews, Vol. 110, No. 1, 2010, pp. 132-145. doi:10.1021/cr900070d
[85] A. Srivastava, C. Galande, L. Ci, L. Song, C. Rai, D. Jariwala, K. F. Kelly and P. M. Ajayan, “Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films,” Chemistry of Materials, Vol. 22, No. 11, 2010, pp. 3457-3461. doi:10.1021/cm101027c
[86] J. J. Yoo, K. Balakrishnan, J. S. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. M. Reddy, J. Yu, R. Vajtai and P. M. Ajayan, “Ultrathin Planar Graphene Supercapacitors,” Nano Letters, Vol. 11, No. 4, 2011, pp. 1423-1427. doi:10.1021/nl200225j
[87] W. S. Hummers and R. E. Offeman, “Preparation of Graphitic Oxide,” Journal of the American Chemical Society, Vol. 80, No. 6, 1958, pp. 1339-1339. doi:10.1021/ja01539a017
[88] Y. W. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science, Vol. 332, No. 6037, 2011, pp. 1537-1541. doi:10.1126/science.1200770
[89] C. G. Liu, Z. N. Yu, D. Neff, A. Zhamu and B. Z. Jang, “Graphene-Based Supercapacitor with an Ultrahigh Energy Density,” Nano Letters, Vol. 10, No. 12, 2010, pp. 4863-4868. doi:10.1021/nl102661q
[90] V. Strong, S. Dubin, M. F. El-Kady, A. Lech, Y. Wang, B. H. Weiller and R. B. Kaner, “Patterning and Electronic Tuning of Laser Scribed Graphene for Flexible All-Carbon Devices,” ACS Nano, Vol. 6, No. 2, 2012, pp. 1395- 1403. doi:10.1021/nn204200w
[91] M. F. El-Kady, V. Strong, S. Dubin and R. B. Kaner, “Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors,” Science, Vol. 335, No. 6074, 2012, pp. 1326-1330. doi:10.1126/science.1216744
[92] Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L. C. Qin, “Graphene and Nanostructured MnO2 Composite Electrodes for Supercapacitors,” Carbon, Vol. 49, No. 9, 2011, pp. 2917-2925. doi:10.1016/j.carbon.2011.02.068
[93] Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu and G. Q. Shi, “Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films,” ACS Nano, Vol. 4, No. 4, 2010, pp. 1963-1970. doi:10.1021/nn1000035
[94] V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner and Y. Yang, “Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors,” Nano Letters, Vol. 9, No. 5, 2009, pp. 1949- 1955. doi:10.1021/nl9001525
[95] Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L. C. Qin, “Graphene and Carbon Nanotube Composite Electrodes for Supercapacitors with Ultra-High Energy Density,” Physical Chemistry Chemical Physics, Vol. 13, No. 39, 2011, pp. 17615-17624. doi:10.1039/c1cp21910c
[96] M. Keidar, A. Shashurin, J. A. Li, O. Volotskova, M. Kundrapu, T. Sen Zhuang, “Arc Plasma Synthesis of Carbon Nanostructures: Where Is the Frontier?” Journal of Physics D-Applied Physics, Vol. 44, No. 17, 2011, Article ID: 174006. doi:10.1088/0022-3727/44/17/174006
[97] M. Keidar, I. Levchenko, T. Arbel, M. Alexander, A. M. Waas and K. Ostrikov, “Increasing the Length of Single-Wall Carbon Nanotubes in a Magnetically Enhanced Arc Discharge,” Applied Physics Letters, Vol. 92, No. 4, 2008, Article ID: 043129. doi:10.1063/1.2839609
[98] O. Volotskova, J. A. Fagan, J. Y. Huh, F. R. Phelan, A. Shashurin and M. Keidar, “Tailored Distribution of Single-Wall Carbon Nanotubes from Arc Plasma Synthesis Using Magnetic Fields,” ACS Nano, Vol. 4, No. 9, 2010, pp. 5187-5192. doi:10.1021/nn101279r
[99] M. Keidar, I. Levchenko, T. Arbel, M. Alexander, A. M. Waas and K. K. Ostrikov, “Magnetic-Field-Enhanced Syn- thesis of Single-Wall Carbon Nanotubes in Arc Discharge,” Journal of Applied Physics, Vol. 103, No. 9, 2008, Article ID: 094318. doi:10.1063/1.2919712
[100] J. Li, O. Volotskova, A. Shashurin and M. Keidar, “Con-trolling Diameter Distribution of Catalyst Nanoparticles in Arc Discharge,” Journal of Nanoscience and Nanotechnology, Vol. 11, No. 11, 2011, pp. 10047-10052. doi:10.1166/jnn.2011.4999
[101] J. Li, O. Volotskova, A. Shashurin and M. Keidar, “Cor- relation between Formation of the Plasma Jet and Synthesis of Graphene in Arc Discharge,” IEEE Transactions on plasma Science, Vol. 39, No. 11, 2011, pp. 2366-2367. doi:10.1109/TPS.2011.2160567
[102] J. Li, A. Shashurin, M. Kundrapu and M. Keidar, “Si- multaneous Synthesis of Single Wall Carbon Nanotubes and Graphene in a Magnetically-Enhanced Arc Plasma,” Journal of Visualized Experiments, Vol. 60, 2012, p. e3455. doi:10.3791/3455
[103] J. Li, X. Cheng, J. Sun, M. Reeves, A. Shashurin and M. Keidar, “Preparation of Resistance Controlled Electrodes of a Paper Based Capacitor with Carbon Nanotubes Graphene Composites in Magnetically Enhanced Arc Discharge,” Unpublished.
[104] S. Hu, R. Rajamani and X. Yu, “Flexible Solid-State Paper Based Carbon Nanotube Supercapacitor,” Applied Physics Letters, Vol. 100, No. 10, 2012, Article ID: 104103. doi:10.1063/1.3691948
[105] B. G. Choi, J. Hong, W. H. Hong, P. T. Hammond and H. Park, “Facilitated Ion Transport in All-Solid-State Flexible Supercapacitors,” ACS Nano, Vol. 5, No. 9, 2011, pp. 7205-7213. doi:10.1021/nn202020w

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.