Intensity Dependent Nonlinear Absorption in Direct and Indirect Band Gap Crystals under Nano and Picosecond Z-Scan

Abstract

The nonlinear absorption properties of direct (GaN) and indirect (CdI2) band gap crystals have been studied by using an open aperture Z-scan technique under fundamental (1064 nm) and frequency doubled (532 nm) wavelength respectively with 10 ns or 60 ps pulse durations. Direct band gap crystal exhibits two and three photon absorption at all input irradiances. On the other hand, at low input irradiance the indirect band gap crystal exhibits saturable absorption (SA). At higher input irradiances two and three photon absorption becomes dominant. A monotonic increase of the nonlinear absorption coefficients with increasing laser pulse duration from 60 ps to 10 ns is observed for GaN and CdI2 crystals.

Share and Cite:

D. Sharma, P. Gaur, B. Pal Malik, N. Singh and A. Gaur, "Intensity Dependent Nonlinear Absorption in Direct and Indirect Band Gap Crystals under Nano and Picosecond Z-Scan," Optics and Photonics Journal, Vol. 2 No. 2, 2012, pp. 98-104. doi: 10.4236/opj.2012.22013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. S. Bahae, D. C. Hutchings, D. J. Hagan and E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE Journal of Quantum Electron, Vol. 27, No. 6, 1991, pp. 1296-1309. doi:10.1109/3.889946
[2] A. A. Said, M. Sheikh-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young and E. W. Van Stryland, “Determination of Bound Electronic and Free Carrier Nonlinearities in ZnSe, GaAs, CdTe and ZnTe,” Journal of Optical Society of America B, Vol. 9, No. 3, 1992, pp. 405-414. doi:10.1364/JOSAB.9.000405
[3] T. D. Krauss and F. W. Wise, “Femtosecond Measurement of Nonlinear Absorption and Refraction in CdS, ZnSe, ZnS,” Applied Physics Letter, Vol. 65, No. 14, 1994, pp. 1739-1741. doi:10.1063/1.112901
[4] D. C. Hucthing and B. S. Wherrett, “Theory of the Anisotropy of Ultrafast Nonlinear Refraction in Zinc-Blende Semiconductors,” Physics Revolution B, Vol. 52, No. 11, 1995, pp. 8150-8159.
[5] V. Pacebutas, A. Kratkus, T. Suski, P. Perlin and M. Leszczynski, “Photoconductive Z-Scan Measurement of Multiphoton Absorption of GaN,” Journal of Applied Physics, Vol. 92, No. 11, 2002, pp. 6930-6932.
[6] R. A. Ganeev, M. Baba, M. Morita, D. Rao, H. Fujii, A. I. Rayasnyansky, N. Ishizawa, M. Suzuki and H. Kuroda, “Nonlinear Optical Properties of CdS and ZnS Nanoparticles Doped into Zirconium Oxide Films,” Journal of Optics A: Pure and Applied Optics, Vol. 6, No. 4, 2004, pp. 447-453. doi:10.1088/1464-4258/6/4/024
[7] A. Gaur, D. K. Sharma, D. S. Ahlawat and N. Singh, “Multiphoton Photoconductivity and Optical Nonlinearities in ZnSe and CdSe Direct Band Gap Crystals,” Journal of Optics A: Pure and Applied Optics, Vol. 9, No. 3, 2007, pp. 260-264. doi:10.1088/1464-4258/9/3/009
[8] E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha and T. F. Boggess, “Two Photon Absorption, Nonlinear Refraction and Optical Limiting in Semiconductors,” Optical Engineering, Vol. 24, No. 4, 1985, pp. 613-623.
[9] J. H. Bechtel and W. L. Smith, “Two Photon Absorption in Semiconductors with Picoseconds Laser Pulses,” Physics Revolution B, Vol. 13, No. 8, 1976, pp. 3515-3522. doi:10.1103/PhyRevB.13.3515
[10] R. L. Sutherland, D. G. McLean and S. Kirkpatrick, “Handbook of Nonlinear Optics,” 2nd Edition, Marcel Dekker, New York, 2003.
[11] K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu and A. Jha, “Nonlinear Optical Properties of Chalcogenide Glasses: Observation of Multiphoton Absorption,” Applied Physics Letter, Vol. 79, No. 13, 2001, pp. 19391941. doi:10.1063/1.1402158
[12] M. S. Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE Journal of Quantum Electron, Vol. 26, No. 4, 1990, pp. 760-769. doi:10.1109/3.53394
[13] T. Tritschler, O. D. Mucke, M. Wegener, U. Morgner and F. X. Kartner, “Evidence for Third Harmonic Generation in Disguise of Second-Harmonic Generation in Extreme Nonlinear Optics,” Physics Revolution Letter, Vol. 90, No. 21, 2003, pp. 217404-217408. doi:10.1103/PhyRevLett.90.217404
[14] L. Irimpan, A. Deepthy, B. Krishnan, L. M. Kukreja, V. P. N. Nampoori and P. Radhakrishnan, “Effect of Self Assembly on the Nonlinear Optical Characteristics of ZnO Thin Films,” Optics Communication, Vol. 281, No. 10, 2008, pp. 2938-2943. doi:10.1016/j.optcom.2008.01.029
[15] D. S. Ahlawat, A. Gaur, N. Singh and R. D. Singh, “Pulsed Laser Induced Multiphoton Photoconductivity in an Indirect Band Gap Crystal: PbI2,” Physica Statistica Solidi (b), Vol. 219, 2000, pp. 421-424.
[16] A. M. Kulibekov, K. Allakhverdiev, D. A. Guseinova, E. Y. Salaev and O. Baran, “Optical Absorption in GaSe under High Density Ultra Short Pulses,” Optics Communication, Vol. 239, No. 1-3, 2004. pp. 193-198. doi:10.1016/j.optcom.2004.05.011
[17] R. Philip, G. R. Kumar, N. Sandhyarani and T. Pradeep, “Picosecond Optical Nonlinearity in Monolayered-Protected Gold, Silver, and Gold-Silver Alloy Nanoclusters,” Physics Revolution B, Vol. 62, No. 19, 2000, pp. 1316013166. doi:10.1103/PhyRevB.62.13160
[18] U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert and A. Wokaun, “Pd Nanoparticles Formation by Femtosecond Laser Irradiation and the Nonlinear Optical Properties at 532 nm Using Nanosecond Laser Pulses,” Journal of Applied Physics, Vol. 104, No. 7, 2008, pp. 073107-073115. doi:10.1063/1.2990056
[19] K. L. Vodopyanov, S. B. Mirov, V. G. Voevodin and P. G. Schunemann, “Two Photon Absorption in GaSe and CdGeAs2,” Optics Communications, Vol. 155, No. 1-3, 1998, pp. 47-51. doi:10.1016/S0030-4018(98)00364-2
[20] K. R. Allakhverdiev, T. Baykara, S. Joosten, E. Gunay, A. A. Kaya, A. Kulibekov, A. Seilmeier and E. Y. Salaev, “Anisotropy of Two Photon Absorption in Gallium Selenide at 1064 nm,” Optics Communications, Vol. 261, No. 1, 2006, pp. 60-64. doi:10.1016/j.optcom.2005.11.046
[21] F. Adduci, I. M. Catalano, A. Cingolani and A. Minafra, “Direct and Indirect Two Photon Processes in Layered Semiconductors,” Physics Revolution B, Vol. 15, No. 2, 1977, pp. 926-931. doi:10.1103/PhyRevB.15.926
[22] Y. B. Band, D. J. Harter and R. Bavli, “Optical Pulse Compressor Composed of Saturable and Reverse Saturable Absorbers,” Chemical Physics Letter, Vol. 126, No. 3-4, 1986, pp. 280-284. doi:10.1016/S0009-2614(86)80083-5
[23] H. P. Li, C. H. Kam, Y. L. Lam and W. Ji, “Optical Nonlinearities and Photo Excited Carrier Life Time in CdS at 532 nm,” Optics Communications, Vol. 190, No. 1-6, 2001, pp. 351-356. doi:10.1016/S0030-4018(01)01066-5
[24] E. C. Fox and H. M. Van Driel, “Femtosecond Probing of Photoinduced Refractive Index Changes in Semiconductors,” In: W. E. Bron, Ed., Ultrashort Processes in Condensed Matter, Plenum Press, New York, 1993.
[25] J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan and E. W. Van Stryland, “Time Resolved Z-Scan Measurements of Optical Nonlinearities,” Journal of Optical Society America B, Vol. 11, No. 6, pp. 1009-1017. doi:10.1364/JOSAB.11.001009
[26] K. Y. Tseng, K. S. Wong and G. K. L. Wong, “Femtosecond Time Resolved Z-Scan Investigations of Optical Nonlinearities in ZnSe,” Optics Letter, Vol. 21, No. 3, 1996, pp. 180-182. doi:10.1364/OL.21.000180
[27] J. F. Lami and C. Hirlimann, “Two Photon Excited Room Temperature Luminescence of CdS in the Femtosecond Regime,” Physics Revolution B, Vol. 60, No. 7, 1999, pp 4763-4770. doi:10.1103/PhyRevB.60.4763

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.