Changes in Bacterial Density, CO2 Evolution and Enzyme Activities in Poultry Dung Amended Soil

Abstract

The utilization of cattle and poultry manure as organic fertilizer improves soil productivity, but arsenic contaminated poultry dung may interfere in soil metabolism and soil fertility. The study was conducted to assess the effects of poultry dung as well as arsenic contamination on soil properties in 1%, 3% and 5% poultry dung amended soil and 1, 5 and 10 ppm sodium arsenite contaminated soil. pH and conductivity were found to be increasing with increase in poultry dung in soil. Other chemical parameters like nitrate, phosphate and organic carbon were found higher in poultry dung amended soil than that of arsenic contaminated soil. Soil bacteria, CO2 evolution and enzymatic activities like amylase, invertase and dehydrogenase were also found higher in poultry dung amended soil suggesting the effectiveness of poultry dung in enhancing soil productivity, even if it was contaminated by As through feed additive.

Share and Cite:

L. Bhoi and P. Mishra, "Changes in Bacterial Density, CO2 Evolution and Enzyme Activities in Poultry Dung Amended Soil," Open Journal of Soil Science, Vol. 2 No. 2, 2012, pp. 196-201. doi: 10.4236/ojss.2012.22024.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. R. Edwards and T. C. Daniel, “Environmental Impacts of On-Farm Poultry Waste Disposal: A Review,” Bioresource Technology, Vol. 41, No. 1, 1992, pp. 9-33. doi:10.1016/0960-8524(92)90094-E
[2] N. C. Brady and R. R. Weil, “The Nature and Properties of Soils,” 11th Edition, Prentice Hall International, Inc., 1996.
[3] D. C. Clay, V. Kelly, E. Mpyisi and T. Reardon, “Input Use and Conservation Investments among Farm Households in Rwanda: Patterns and Determinants,” In: Barrett, Place and Aboud, Eds., Natural Resources Management in African Agriculture: Understanding and Improving Current Practices, CABI publishing, Oxon and New York, 2002, pp. 103-114.
[4] M. E. López- Masquera, F. Cabaleiro, M. S. Sainz, A. López-Fabal and E. Carral, “Fertilizing Value of Broiler Litter: Effects of Drying and Pelletizing,” Bioresource Technology, Vol. 99, No. 13, 2008, pp. 5626-5633. doi:10.1016/j.biortech.2007.10.034
[5] P. R. Warman, “The Effect of Fertilizer, Chicken Manure and Dairy Manure on Timothy Yield, Tissue Composition and Soil Fertility,” Agricultural Wastes, Vol. 18, No. 4, 1986, pp. 289-298. doi:10.1016/0141-4607(86)90074-0
[6] A. J. Schjegel, “Effect of Composted Manure on Soil Chemical Properties and Nitrogen Use by Grain Sorghum,” Journal of Production Agriculture, Vol. 5, No. 1, 1992, pp. 153-157.
[7] F. Place, C. B. Barrett, F. H. Ade, J. J. Ramisch and B. Vanlauwe, “Prospects for Integrated Soil Fertility Management Using Organic and Inorganic Inputs: Evidence from Smallholder African Agricultural Systems,” Food Policy, Vol. 28, No. 4, 2003, pp. 365-378. doi:10.1016/j.foodpol.2003.08.009
[8] M. Uddin, A. Kashem and T. Osman, “Effect of Organic and Inorganic Amendments on the Phytoavailability of Phosphorous to Corn (Zea mays),” Open Journal of Soil Science, Vol. 2, No. 1, 2012, pp. 50-54. doi:10.4236/ojss.2012.21008
[9] P. W. Chescheir, L. M. Westserman and L. M. Safley, “Laboratory Methods for Estimating Available Nitrogen in Manures and Sludge,” Agricultural Wastes, Vol. 18, No. 3, 1986, pp. 175-195. doi:10.1016/0141-4607(86)90112-5
[10] C. V. Miller, T. C. Hancock and J. M. Denver, “Environmental Fate and Transport of Arsenical Feed Amendments for Animal Agriculture,” American Geophysical Union, 2000 Spring Meeting: Integrative Geoscience Solutions—A Start for the New Millennium, Washington DC, 30 May-3 June 2000.
[11] A. K. Kpomblekou, R. O. Ankumah, and H. A. Ajwa, “Trace and Non Trace Element Contents of Broiler Litter,” Communications in Soil Science and Plant Analysis, Vol. 33, No. 11-12, 2002, pp. 1799-1811.
[12] M. L. Jackson, “Soil Chemical Analysis,” Prentice Hall India, 1973, p. 498.
[13] A. Walkley and I. A. Black, “Determination of Organic Carbon in Soil,” Soil Science, Vol. 37, No. 1, 1934, pp. 29-38. doi:10.1097/00010694-193401000-00003
[14] H. J. Harper, “The Accurate Determination of Nitrates in Soils. Phenoldisulfonic Acid Method,” Industrial and Engineering Chemistry, Vol. 16, 1924, pp. 180-183. doi:10.1021/ie50170a037
[15] S. R. Olsen, C. V. Cole, F. S. Watanabe and L. A. Dean, “Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate,” USDA Cire, US Gov. Print. Office, Washington D.C, Vol. 939, 1954, pp. 1-19.
[16] D. C. Ballinger, R. J. Lishaka and M. E. Gales, “Application of Silver Diethyldithiocarbamate Method to Determination of Arsenic,” Journal of the American Water Works Association, Vol. 54, 1962, p. 1424.
[17] P. C. Mishra, R. K. Mohanty and M. C. Dash, “Enzyme activity in Subtropical Surface Soils under Pasture,” Indian Journal of Agricultural Chemistry, Vol. 12, 1979, pp. 9-24.
[18] B. F. Casida, “Microbial Metabolic Activity in Soil as Measured by Dehydrogenase Determination,” Applied and Environmental Microbiology, Vol. 34, 1977, pp. 630- 636.
[19] M. Witkamp, “Rate of Carbon Dioxide Evolution from the Forest Floor,” Ecology, Vol. 47, 1966, pp. 492-494. doi:10.2307/1932992
[20] J. P. E. Anderson, “Soil Respiration,” In: A. L. Page, R. H. Miller and D. R. Kenney, Eds., Method of Soil Analysis, Part 2, Chemical and Microbial Properties, 2nd Edition, 1982, pp. 837-871.
[21] D. K. Jha, G. D. Sharma and R. R. Mishra, “Soil Microbial Population Numbers and Enzyme Activities in Relation to Altitude and Forest Degradation,” Soil Biology and Biochemistry, Vol. 24, No. 8, 1992, pp. 761-767. doi:10.1016/0038-0717(92)90250-2
[22] P. Mitchell and B. Donald, “The Nature and Significance of Public Exposure to Arsenic: A Review of Its Relevance to Southwest England,” Environmental Geochemistry and Health, Vol. 17, No. 2, 1995, pp. 57-82. doi:10.1007/BF00146709
[23] T. M. Agbede, S. O. Ojeniyi and A. J. Adeyemo, “Effect of Poultry Manure on Soil Physical and Chemical Properties, Growth and Grain Yield of Sorghum in Southwest Nigeria,” American-Eurasian Journal of Sustainable Agriculture, Vol. 2, No. 1, 2008, pp. 72-77.
[24] M. J. Jordan and M. P. Lechevalier, “Effect of Zinc Smelter Emissions on Forest Soil Microflora,” Canadian Journal of Microbiology, Vol. 21, 1975, pp. 1855-1865. doi:10.1139/m75-269
[25] S. T. Williams, T. McNeilly and E. M. H. Wellington, “The Decomposition of Vegetation Growing on Metal Mine Waste,” Soil Biology and Biochemistry, Vol. 9, 1997, pp. 271-275. doi:10.1016/0038-0717(77)90034-7
[26] M. Wood, “A Mechanism of Aluminum Toxicity to Soil Bacteria and Ecological Implications,” In: R. A. Date, et al., Eds., Plant-Soil Interactions at Low pH, Kluwer Academic Publishers, Netherlands, 1995, pp. 173-179.
[27] S. Dahlin, E. Witter, A. M. Martensson, A. Turner and E. Baath, “Where’s the Limit? Changes in the Microbiological Properties of Agricultural Soils at Low Levels of Metal Contamination,” Soil Biology and Biochemistry, Vol. 29, 1997, pp. 1405-1415. doi:10.1016/S0038-0717(97)00048-5
[28] R. G. Kuperman and M. M. Carreiro, “Soil Heavy Metal Concentrations, Microbial Biomass and Enzyme Activities in a Contaminated Grassland Ecosystem,” Soil Biology and Biochemistry, Vol. 29, 1997, pp. 179-190. doi:10.1016/S0038-0717(96)00297-0
[29] K. E. Giller, E. Witter and S. P. McGrath, “Toxicity of Heavy Metals to Microorganisms and Microbial Processes in Agricultural Soils: A Review,” Soil Biology and Biochemistry, Vol. 30, No. 10-11, 1998, pp. 1389-1414. doi:10.1016/S0038-0717(97)00270-8
[30] B. Stenberg, “Monitoring Soil Quality of Arable Land: Microbiological Indicators,” Acta Agriculturae Scandinavica Section B. soil and Plant Science, Vol. 49, 1999, pp. 1-24.
[31] T. Fan, B.A. Stewart, W. Yong, L. Junjie and Z. Guangye, “Long-Term Fertilization Effects on Grain Yield, Water- Use Efficiency and Soil Fertility in the Dryland of Loess Plateau in China,” Agriculture, Ecosystems & Environment, Vol. 106, No. 4, 2005, pp. 313-329. doi:10.1016/j.agee.2004.09.003
[32] S. B. Wuest, T. C. Caesar-Ton That, S. F. Wright and J. D. Williams, “Organic Matter Addition, N, and Residue Burning Effects on Infiltration, Biological, and Physical Properties of an Intensively Tilled Silt-Loam Soil,” Soil & Tillage Research, Vol. 84, No. 2, 2005, pp. 154-167. doi:10.1016/j.still.2004.11.008
[33] P. Wang, J. T. Durkalski, W. Yu, H. A. J. Hoitink and W. A. Dick, “Agronomic and Soil Responses to Compost and Manure Amendments under Different Tillage System,” Soil Science, Vol. 171, No. 6, 2006, pp. 456-467. doi:10.1097/01.ss.0000227824.77488.ac
[34] G. Tyler, “Heavy Metals in Soil Biology and Biochemistry,” In: E. A. Paul and J. N. Ladd, Eds., Soil Biochemistry, Moral Dekker, New York, 1991, pp. 371-414.
[35] D. R. Edwards and T. C. Daniel, “Environmental Impacts of On-Farm Poultry Waste Disposal: A Review,” Bioresource Technology, Vol. 41, No. 1, 1992, pp. 9-33. doi:10.1016/0960-8524(92)90094-E
[36] N. C. Brady and R. R. Weil, “The Nature and Properties of Soils,” 11th Edition, Prentice Hall International, Inc., 1996.
[37] D. C. Clay, V. Kelly, E. Mpyisi and T. Reardon, “Input Use and Conservation Investments among Farm Households in Rwanda: Patterns and Determinants,” In: Barrett, Place and Aboud, Eds., Natural Resources Management in African Agriculture: Understanding and Improving Current Practices, CABI publishing, Oxon and New York, 2002, pp. 103-114.
[38] M. E. López- Masquera, F. Cabaleiro, M. S. Sainz, A. López-Fabal and E. Carral, “Fertilizing Value of Broiler Litter: Effects of Drying and Pelletizing,” Bioresource Technology, Vol. 99, No. 13, 2008, pp. 5626-5633. doi:10.1016/j.biortech.2007.10.034
[39] P. R. Warman, “The Effect of Fertilizer, Chicken Manure and Dairy Manure on Timothy Yield, Tissue Composition and Soil Fertility,” Agricultural Wastes, Vol. 18, No. 4, 1986, pp. 289-298. doi:10.1016/0141-4607(86)90074-0
[40] A. J. Schjegel, “Effect of Composted Manure on Soil Chemical Properties and Nitrogen Use by Grain Sorghum,” Journal of Production Agriculture, Vol. 5, No. 1, 1992, pp. 153-157.
[41] F. Place, C. B. Barrett, F. H. Ade, J. J. Ramisch and B. Vanlauwe, “Prospects for Integrated Soil Fertility Management Using Organic and Inorganic Inputs: Evidence from Smallholder African Agricultural Systems,” Food Policy, Vol. 28, No. 4, 2003, pp. 365-378. doi:10.1016/j.foodpol.2003.08.009
[42] M. Uddin, A. Kashem and T. Osman, “Effect of Organic and Inorganic Amendments on the Phytoavailability of Phosphorous to Corn (Zea mays),” Open Journal of Soil Science, Vol. 2, No. 1, 2012, pp. 50-54. doi:10.4236/ojss.2012.21008
[43] P. W. Chescheir, L. M. Westserman and L. M. Safley, “Laboratory Methods for Estimating Available Nitrogen in Manures and Sludge,” Agricultural Wastes, Vol. 18, No. 3, 1986, pp. 175-195. doi:10.1016/0141-4607(86)90112-5
[44] C. V. Miller, T. C. Hancock and J. M. Denver, “Environmental Fate and Transport of Arsenical Feed Amendments for Animal Agriculture,” American Geophysical Union, 2000 Spring Meeting: Integrative Geoscience Solutions—A Start for the New Millennium, Washington DC, 30 May-3 June 2000.
[45] A. K. Kpomblekou, R. O. Ankumah, and H. A. Ajwa, “Trace and Non Trace Element Contents of Broiler Litter,” Communications in Soil Science and Plant Analysis, Vol. 33, No. 11-12, 2002, pp. 1799-1811.
[46] M. L. Jackson, “Soil Chemical Analysis,” Prentice Hall India, 1973, p. 498.
[47] A. Walkley and I. A. Black, “Determination of Organic Carbon in Soil,” Soil Science, Vol. 37, No. 1, 1934, pp. 29-38. doi:10.1097/00010694-193401000-00003
[48] H. J. Harper, “The Accurate Determination of Nitrates in Soils. Phenoldisulfonic Acid Method,” Industrial and Engineering Chemistry, Vol. 16, 1924, pp. 180-183. doi:10.1021/ie50170a037
[49] S. R. Olsen, C. V. Cole, F. S. Watanabe and L. A. Dean, “Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate,” USDA Cire, US Gov. Print. Office, Washington D.C, Vol. 939, 1954, pp. 1-19.
[50] D. C. Ballinger, R. J. Lishaka and M. E. Gales, “Application of Silver Diethyldithiocarbamate Method to Determination of Arsenic,” Journal of the American Water Works Association, Vol. 54, 1962, p. 1424.
[51] P. C. Mishra, R. K. Mohanty and M. C. Dash, “Enzyme activity in Subtropical Surface Soils under Pasture,” Indian Journal of Agricultural Chemistry, Vol. 12, 1979, pp. 9-24.
[52] B. F. Casida, “Microbial Metabolic Activity in Soil as Measured by Dehydrogenase Determination,” Applied and Environmental Microbiology, Vol. 34, 1977, pp. 630- 636.
[53] M. Witkamp, “Rate of Carbon Dioxide Evolution from the Forest Floor,” Ecology, Vol. 47, 1966, pp. 492-494. doi:10.2307/1932992
[54] J. P. E. Anderson, “Soil Respiration,” In: A. L. Page, R. H. Miller and D. R. Kenney, Eds., Method of Soil Analysis, Part 2, Chemical and Microbial Properties, 2nd Edition, 1982, pp. 837-871.
[55] D. K. Jha, G. D. Sharma and R. R. Mishra, “Soil Microbial Population Numbers and Enzyme Activities in Relation to Altitude and Forest Degradation,” Soil Biology and Biochemistry, Vol. 24, No. 8, 1992, pp. 761-767. doi:10.1016/0038-0717(92)90250-2
[56] P. Mitchell and B. Donald, “The Nature and Significance of Public Exposure to Arsenic: A Review of Its Relevance to Southwest England,” Environmental Geochemistry and Health, Vol. 17, No. 2, 1995, pp. 57-82. doi:10.1007/BF00146709
[57] T. M. Agbede, S. O. Ojeniyi and A. J. Adeyemo, “Effect of Poultry Manure on Soil Physical and Chemical Properties, Growth and Grain Yield of Sorghum in Southwest Nigeria,” American-Eurasian Journal of Sustainable Agriculture, Vol. 2, No. 1, 2008, pp. 72-77.
[58] M. J. Jordan and M. P. Lechevalier, “Effect of Zinc Smelter Emissions on Forest Soil Microflora,” Canadian Journal of Microbiology, Vol. 21, 1975, pp. 1855-1865. doi:10.1139/m75-269
[59] S. T. Williams, T. McNeilly and E. M. H. Wellington, “The Decomposition of Vegetation Growing on Metal Mine Waste,” Soil Biology and Biochemistry, Vol. 9, 1997, pp. 271-275. doi:10.1016/0038-0717(77)90034-7
[60] M. Wood, “A Mechanism of Aluminum Toxicity to Soil Bacteria and Ecological Implications,” In: R. A. Date, et al., Eds., Plant-Soil Interactions at Low pH, Kluwer Academic Publishers, Netherlands, 1995, pp. 173-179.
[61] S. Dahlin, E. Witter, A. M. Martensson, A. Turner and E. Baath, “Where’s the Limit? Changes in the Microbiological Properties of Agricultural Soils at Low Levels of Metal Contamination,” Soil Biology and Biochemistry, Vol. 29, 1997, pp. 1405-1415. doi:10.1016/S0038-0717(97)00048-5
[62] R. G. Kuperman and M. M. Carreiro, “Soil Heavy Metal Concentrations, Microbial Biomass and Enzyme Activities in a Contaminated Grassland Ecosystem,” Soil Biology and Biochemistry, Vol. 29, 1997, pp. 179-190. doi:10.1016/S0038-0717(96)00297-0
[63] K. E. Giller, E. Witter and S. P. McGrath, “Toxicity of Heavy Metals to Microorganisms and Microbial Processes in Agricultural Soils: A Review,” Soil Biology and Biochemistry, Vol. 30, No. 10-11, 1998, pp. 1389-1414. doi:10.1016/S0038-0717(97)00270-8
[64] B. Stenberg, “Monitoring Soil Quality of Arable Land: Microbiological Indicators,” Acta Agriculturae Scandinavica Section B. soil and Plant Science, Vol. 49, 1999, pp. 1-24.
[65] T. Fan, B.A. Stewart, W. Yong, L. Junjie and Z. Guangye, “Long-Term Fertilization Effects on Grain Yield, Water- Use Efficiency and Soil Fertility in the Dryland of Loess Plateau in China,” Agriculture, Ecosystems & Environment, Vol. 106, No. 4, 2005, pp. 313-329. doi:10.1016/j.agee.2004.09.003
[66] S. B. Wuest, T. C. Caesar-Ton That, S. F. Wright and J. D. Williams, “Organic Matter Addition, N, and Residue Burning Effects on Infiltration, Biological, and Physical Properties of an Intensively Tilled Silt-Loam Soil,” Soil & Tillage Research, Vol. 84, No. 2, 2005, pp. 154-167. doi:10.1016/j.still.2004.11.008
[67] P. Wang, J. T. Durkalski, W. Yu, H. A. J. Hoitink and W. A. Dick, “Agronomic and Soil Responses to Compost and Manure Amendments under Different Tillage System,” Soil Science, Vol. 171, No. 6, 2006, pp. 456-467. doi:10.1097/01.ss.0000227824.77488.ac
[68] G. Tyler, “Heavy Metals in Soil Biology and Biochemistry,” In: E. A. Paul and J. N. Ladd, Eds., Soil Biochemistry, Moral Dekker, New York, 1991, pp. 371-414.
[69] D. R. Edwards and T. C. Daniel, “Environmental Impacts of On-Farm Poultry Waste Disposal: A Review,” Bioresource Technology, Vol. 41, No. 1, 1992, pp. 9-33. doi:10.1016/0960-8524(92)90094-E
[70] N. C. Brady and R. R. Weil, “The Nature and Properties of Soils,” 11th Edition, Prentice Hall International, Inc., 1996.
[71] D. C. Clay, V. Kelly, E. Mpyisi and T. Reardon, “Input Use and Conservation Investments among Farm Households in Rwanda: Patterns and Determinants,” In: Barrett, Place and Aboud, Eds., Natural Resources Management in African Agriculture: Understanding and Improving Current Practices, CABI publishing, Oxon and New York, 2002, pp. 103-114.
[72] M. E. López- Masquera, F. Cabaleiro, M. S. Sainz, A. López-Fabal and E. Carral, “Fertilizing Value of Broiler Litter: Effects of Drying and Pelletizing,” Bioresource Technology, Vol. 99, No. 13, 2008, pp. 5626-5633. doi:10.1016/j.biortech.2007.10.034
[73] P. R. Warman, “The Effect of Fertilizer, Chicken Manure and Dairy Manure on Timothy Yield, Tissue Composition and Soil Fertility,” Agricultural Wastes, Vol. 18, No. 4, 1986, pp. 289-298. doi:10.1016/0141-4607(86)90074-0
[74] A. J. Schjegel, “Effect of Composted Manure on Soil Chemical Properties and Nitrogen Use by Grain Sorghum,” Journal of Production Agriculture, Vol. 5, No. 1, 1992, pp. 153-157.
[75] F. Place, C. B. Barrett, F. H. Ade, J. J. Ramisch and B. Vanlauwe, “Prospects for Integrated Soil Fertility Management Using Organic and Inorganic Inputs: Evidence from Smallholder African Agricultural Systems,” Food Policy, Vol. 28, No. 4, 2003, pp. 365-378. doi:10.1016/j.foodpol.2003.08.009
[76] M. Uddin, A. Kashem and T. Osman, “Effect of Organic and Inorganic Amendments on the Phytoavailability of Phosphorous to Corn (Zea mays),” Open Journal of Soil Science, Vol. 2, No. 1, 2012, pp. 50-54. doi:10.4236/ojss.2012.21008
[77] P. W. Chescheir, L. M. Westserman and L. M. Safley, “Laboratory Methods for Estimating Available Nitrogen in Manures and Sludge,” Agricultural Wastes, Vol. 18, No. 3, 1986, pp. 175-195. doi:10.1016/0141-4607(86)90112-5
[78] C. V. Miller, T. C. Hancock and J. M. Denver, “Environmental Fate and Transport of Arsenical Feed Amendments for Animal Agriculture,” American Geophysical Union, 2000 Spring Meeting: Integrative Geoscience Solutions—A Start for the New Millennium, Washington DC, 30 May-3 June 2000.
[79] A. K. Kpomblekou, R. O. Ankumah, and H. A. Ajwa, “Trace and Non Trace Element Contents of Broiler Litter,” Communications in Soil Science and Plant Analysis, Vol. 33, No. 11-12, 2002, pp. 1799-1811.
[80] M. L. Jackson, “Soil Chemical Analysis,” Prentice Hall India, 1973, p. 498.
[81] A. Walkley and I. A. Black, “Determination of Organic Carbon in Soil,” Soil Science, Vol. 37, No. 1, 1934, pp. 29-38. doi:10.1097/00010694-193401000-00003
[82] H. J. Harper, “The Accurate Determination of Nitrates in Soils. Phenoldisulfonic Acid Method,” Industrial and Engineering Chemistry, Vol. 16, 1924, pp. 180-183. doi:10.1021/ie50170a037
[83] S. R. Olsen, C. V. Cole, F. S. Watanabe and L. A. Dean, “Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate,” USDA Cire, US Gov. Print. Office, Washington D.C, Vol. 939, 1954, pp. 1-19.
[84] D. C. Ballinger, R. J. Lishaka and M. E. Gales, “Application of Silver Diethyldithiocarbamate Method to Determination of Arsenic,” Journal of the American Water Works Association, Vol. 54, 1962, p. 1424.
[85] P. C. Mishra, R. K. Mohanty and M. C. Dash, “Enzyme activity in Subtropical Surface Soils under Pasture,” Indian Journal of Agricultural Chemistry, Vol. 12, 1979, pp. 9-24.
[86] B. F. Casida, “Microbial Metabolic Activity in Soil as Measured by Dehydrogenase Determination,” Applied and Environmental Microbiology, Vol. 34, 1977, pp. 630- 636.
[87] M. Witkamp, “Rate of Carbon Dioxide Evolution from the Forest Floor,” Ecology, Vol. 47, 1966, pp. 492-494. doi:10.2307/1932992
[88] J. P. E. Anderson, “Soil Respiration,” In: A. L. Page, R. H. Miller and D. R. Kenney, Eds., Method of Soil Analysis, Part 2, Chemical and Microbial Properties, 2nd Edition, 1982, pp. 837-871.
[89] D. K. Jha, G. D. Sharma and R. R. Mishra, “Soil Microbial Population Numbers and Enzyme Activities in Relation to Altitude and Forest Degradation,” Soil Biology and Biochemistry, Vol. 24, No. 8, 1992, pp. 761-767. doi:10.1016/0038-0717(92)90250-2
[90] P. Mitchell and B. Donald, “The Nature and Significance of Public Exposure to Arsenic: A Review of Its Relevance to Southwest England,” Environmental Geochemistry and Health, Vol. 17, No. 2, 1995, pp. 57-82. doi:10.1007/BF00146709
[91] T. M. Agbede, S. O. Ojeniyi and A. J. Adeyemo, “Effect of Poultry Manure on Soil Physical and Chemical Properties, Growth and Grain Yield of Sorghum in Southwest Nigeria,” American-Eurasian Journal of Sustainable Agriculture, Vol. 2, No. 1, 2008, pp. 72-77.
[92] M. J. Jordan and M. P. Lechevalier, “Effect of Zinc Smelter Emissions on Forest Soil Microflora,” Canadian Journal of Microbiology, Vol. 21, 1975, pp. 1855-1865. doi:10.1139/m75-269
[93] S. T. Williams, T. McNeilly and E. M. H. Wellington, “The Decomposition of Vegetation Growing on Metal Mine Waste,” Soil Biology and Biochemistry, Vol. 9, 1997, pp. 271-275. doi:10.1016/0038-0717(77)90034-7
[94] M. Wood, “A Mechanism of Aluminum Toxicity to Soil Bacteria and Ecological Implications,” In: R. A. Date, et al., Eds., Plant-Soil Interactions at Low pH, Kluwer Academic Publishers, Netherlands, 1995, pp. 173-179.
[95] S. Dahlin, E. Witter, A. M. Martensson, A. Turner and E. Baath, “Where’s the Limit? Changes in the Microbiological Properties of Agricultural Soils at Low Levels of Metal Contamination,” Soil Biology and Biochemistry, Vol. 29, 1997, pp. 1405-1415. doi:10.1016/S0038-0717(97)00048-5
[96] R. G. Kuperman and M. M. Carreiro, “Soil Heavy Metal Concentrations, Microbial Biomass and Enzyme Activities in a Contaminated Grassland Ecosystem,” Soil Biology and Biochemistry, Vol. 29, 1997, pp. 179-190. doi:10.1016/S0038-0717(96)00297-0
[97] K. E. Giller, E. Witter and S. P. McGrath, “Toxicity of Heavy Metals to Microorganisms and Microbial Processes in Agricultural Soils: A Review,” Soil Biology and Biochemistry, Vol. 30, No. 10-11, 1998, pp. 1389-1414. doi:10.1016/S0038-0717(97)00270-8
[98] B. Stenberg, “Monitoring Soil Quality of Arable Land: Microbiological Indicators,” Acta Agriculturae Scandinavica Section B. soil and Plant Science, Vol. 49, 1999, pp. 1-24.
[99] T. Fan, B.A. Stewart, W. Yong, L. Junjie and Z. Guangye, “Long-Term Fertilization Effects on Grain Yield, Water- Use Efficiency and Soil Fertility in the Dryland of Loess Plateau in China,” Agriculture, Ecosystems & Environment, Vol. 106, No. 4, 2005, pp. 313-329. doi:10.1016/j.agee.2004.09.003
[100] S. B. Wuest, T. C. Caesar-Ton That, S. F. Wright and J. D. Williams, “Organic Matter Addition, N, and Residue Burning Effects on Infiltration, Biological, and Physical Properties of an Intensively Tilled Silt-Loam Soil,” Soil & Tillage Research, Vol. 84, No. 2, 2005, pp. 154-167. doi:10.1016/j.still.2004.11.008
[101] P. Wang, J. T. Durkalski, W. Yu, H. A. J. Hoitink and W. A. Dick, “Agronomic and Soil Responses to Compost and Manure Amendments under Different Tillage System,” Soil Science, Vol. 171, No. 6, 2006, pp. 456-467. doi:10.1097/01.ss.0000227824.77488.ac
[102] G. Tyler, “Heavy Metals in Soil Biology and Biochemistry,” In: E. A. Paul and J. N. Ladd, Eds., Soil Biochemistry, Moral Dekker, New York, 1991, pp. 371-414.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.