A lightweight mainstream capnometer with very low dead space volume is useful monitor for neonates with spontanous and mechanical ventilation: Pilot study

Abstract

Objects: The purpose of this study was to observe a correlation between PETCO2 and PaCO2 in intubated neonates under intermittent mandatory ventilation with spontaneous breathing. Material and methods: A total of 55 paired PETCO2 measured by mainstream capnometry and PaCO2 values were obtained from 4 intubated neonates in our neonatal intensive care units at Nagano Children’s Hospital, Nagano, Japan. Results: PETCO2 and PaCO2 were significantly correlated (r2 = 0.928, p < 0.0001). For samples in ventilated neonates with spontaneous breathing, maximum PETCO2 and mean PETCO2 correlated strongly with PaCO2 (maximum PETCO2: r2 = 0.9401, p < 0.0001; mean PETCO2: r2 = 0.8587, p < 0.0001). Although PaCO2 also correlated with minimum PETCO2 (r2 = 0.2884, p < 0.01) in ventilated infants with spontaneous breathing, a significant difference was seen with maximum PETCO2 (p < 0.05) and mean PETCO2 (p < 0.05) in the correlation coefficient r between PaCO2 and PETCO2. Conclusion: Present study showed that a good correlation exists between PETCO2 and PaCO2 in intubated neonates under intermittent mandatory ventilation with spontaneous breathing. Lightweight with low amounts of dead space mainstream capnometry can be used as noninvasive monitor in incubated neonates with spontaneous breathing.

Share and Cite:

Takahashi, D. , Matsui, M. , Hiroma, T. and Nakamura, T. (2012) A lightweight mainstream capnometer with very low dead space volume is useful monitor for neonates with spontanous and mechanical ventilation: Pilot study. Open Journal of Pediatrics, 2, 127-132. doi: 10.4236/ojped.2012.22021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Burton, G.W. (1966) The value of carbon dioxide monitoring during anaesthesia. Anaesthesia, 21, 173-183. doi:10.1111/j.1365-2044.1966.tb02596.x
[2] Burton, G.W. (1969) Measurement of inspired and expired oxygen and carbon dioxide. British Journal of Anaesthesia, 41, 723-730. doi:10.1093/bja/41.9.723
[3] Bhende, M.S. (2001) End-tidal carbon dioxide monitoring in pediatrics—Clinical applications. Journal of Postgraduate Medicine, 47, 215-218.
[4] Takahashi, D., Hiroma, T. and Nakamura, T. (2011) PETCO2 measured by a new lightweight mainstream capnometer with very low dead space volume offers accurate and reliable noninvasive estimation of PaCO2. Research and Reports in Neonatology, 1, 61-66.
[5] Meyer, R.E. and Short, C.E. (1985) Arterial to end-tidal CO2 tension and alveolar dead space in halothaneor isoflurane-anesthetized ponies. American Journal of Veterinary Research, 46, 597-599.
[6] Geiser, D.R. and Rohrbach, B.W. (1992) Use of end-tidal CO2 tension to predict arterial CO2 values in isoflurane-anesthetized equine neonates. American Journal of Veterinary Research, 53, 1617-1621.
[7] Riker, J.B. and Haberman, B. (1976) Expired gas monitoring by mass spectrometry in a respiratory intensive care unit. Critical Care Medicine, 4, 223-229. doi:10.1097/00003246-197609000-00002
[8] McEvedy, B.A., McLeod, M.E., Kirpalani, H., Volgyesi, G.A. and Lerman, J. (1990) End-tidal carbon dioxide measurements in critically ill neonates: A comparison of side-stream and mainstream capnometers. Canadian Journal of Anesthesia, 37, 322-326. doi:10.1007/BF03005583
[9] Hagerty, J.J., Kleinman, M.E., Zurakowski, D., Lyons, A.C. and Krauss, B. (2002) Accuracy of a new low-flow sidestream capnography technology in newborns: A pilot study. Journal of Perinatology, 22, 219-225. doi:10.1038/sj.jp.7210672
[10] Bhat, Y.R. and Abhishek, N. (2008) Mainstream endtidal carbon dioxide monitoring in ventilated neonates. Singapore Medical Journal, 49, 199-203.
[11] Kugelman, A., Zeiger-Aginsky, D., Bader, D., Shoris, I. and Riskin, A. (2008) A novel method of distal end-tidal CO2 capnography in intubated infants: comparison with arterial CO2 and with proximal mainstream end-tidal CO2. Pediatrics, 122, e1219-e1224. doi:10.1542/peds.2008-1300
[12] Lee, K., Khoshnood, B., Wall, S.N., Chang, Y., Hsieh, H.L. and Singh, J.K. (1999) Trend in mortality from respiratory distress syndrome in the United States, 1970-1995. Journal of Pediatrics, 134, 434-440. doi:10.1016/S0022-3476(99)70200-3
[13] Rodriguez, R.J. and Martin, R.J. (1999) Exogenous surfactant therapy in newborns. Respiratory Care Clinics of North America, 5, 595-616.
[14] Wessel, D.L., Adatia, I., Van Marter, L.J., Thompson, J.E., Kane, J.W., Stark, A.R., et al. (1997) Improved oxygenation in a randomized trial of inhaled nitric oxide for persistent pulmonary hypertension of the newborn. Pediatrics, 100, E7. doi:10.1542/peds.100.5.e7
[15] Cornfield, D.N., Maynard, R.C., de Regnier, R.A., Guiang, S.F., Barbato, J.E. and Milla, C.E. (1999) Randomized, controlled trial of low-dose inhaled nitric oxide in the treatment of term and near-term infants with respiratory failure and pulmonary hypertension. Pediatrics, 104, 1089-1094. doi:10.1542/peds.104.5.1089
[16] Plavka, R., Kopecky, P., Sebron, V., Svihovec, P., Zlatohlavkova, B. and Janus, V. (1999) A prospective randomized comparison of conventional mechanical ventilation and very early high frequency oscillatory ventilation in extremely premature newborns with respiratory distress syndrome. Intensive Care Medicine, 25, 68-75. doi:10.1007/s001340050789
[17] Dziedzic, K. and Vidyasagar, D. (1989) Pulse oximetry in neonatal intensive care. Clinics in Perinatology, 16, 177-197.
[18] Madsen, L.P., Rasmussen, M.K., Bjerregaard, L.L., Nohr, S.B. and Ebbesen, F. (2000) Impact of blood sampling in very preterm infants. Scandinavian Journal of Clinical and Laboratory Investigation, 60, 125-132. doi:10.1080/00365510050184949
[19] Giannakopoulou, C., Korakaki, E., Manoura, A., Bikouvarakis, S., Papageorgiou, M., Gourgiotis, D., et al. (2004) Significance of hypocarbia in the development of periventricular leukomalacia in preterm infants. Pediatrics International, 46, 268-273. doi:10.1111/j.1442-200x.2004.01886.x
[20] Erickson, S.J., Grauaug, A., Gurrin, L. and Swaminathan, M. (2002) Hypocarbia in the ventilated preterm infant and its effect on intraventricular haemorrhage and bronchopulmonary dysplasia. Journal of Paediatrics and Child Health, 38, 560-562. doi:10.1046/j.1440-1754.2002.00041.x
[21] Wallin, L.A., Rosenfeld, C.R., Laptook, A.R., Maravilla, A.M., Strand, C., Campbell, N., et al. (1990) Neonatal intracranial hemorrhage: II. Risk factor analysis in an inborn population. Early Human Development. 23, 129-137. doi:10.1016/0378-3782(90)90136-7
[22] Strauss, R.G. (1991) Transfusion therapy in neonates. American Journal of Disease of Children, 145, 904-911.
[23] Wiswell, T.E., Graziani, L.J., Kornhauser, M.S., Stanley, C., Merton, D.A., McKee, L., et al. (1996) Effects of hypocarbia on the development of cystic periventricular leukomalacia in premature infants treated with high-frequency jet ventilation. Pediatrics, 98, 918-924.
[24] Gothard, J.W., Busst, C.M., Branthwaite, M.A., Davies, N.J. and Denison, D.M. (1980) Applications of respiratory mass spectrometry to intensive care. Anaesthesia, 35, 890-895. doi:10.1111/j.1365-2044.1980.tb03950.x
[25] Ornato, J.P., Garnett, A.R. and Glauser, F.L. (1990) Relationship between cardiac output and the end-tidal carbon dioxide tension. Annals of Emergency Medicine, 19, 1104-1106. doi:10.1016/S0196-0644(05)81512-4
[26] Hatle, L. and Rokseth, R. (1974) The arterial to end-expiratory carbon dioxide tension gradient in acute pulmonary embolism and other cardiopulmonary diseases. Chest, 66, 352-357. doi:10.1378/chest.66.4.352
[27] Verschuren, F., Heinonen, E., Clause, D., Roeseler, J., Thys, F., Meert, P., et al. (2004) Volumetric capnography as a bedside monitoring of thrombolysis in major pulmonary embolism. Intensive Care Medicine, 30, 2129-2132. doi:10.1007/s00134-004-2444-9
[28] Capan, L.M., Ramanathan, S., Sinha, K. and Turndorf, H. (1985) Arterial to end-tidal CO2 gradients during spontaneous breathing, intermittent positive-pressure ventilation and jet ventilation. Critical Care Medicine, 13, 810-813. doi:10.1097/00003246-198510000-00007
[29] Evans, J.M., Hogg, M.I. and Rosen, M. (1977) Correlation of alveolar PCO2 estimated by infra-red analysis and arterial PCO2 in the human neonate and the rabbit. British Journal of Anaesthesia, 49, 761-764. doi:10.1093/bja/49.8.761
[30] Weinger, M.B. and Brimm, J.E. (1987) End-tidal carbon dioxide as a measure of arterial carbon dioxide during intermittent mandatory ventilation. Journal of Clinical Monitoring, 3, 73-79. doi:10.1007/BF00858353
[31] Takano, Y., Sakamoto, O., Kiyofuji, C. and Ito, K. (2003) A comparison of the end-tidal CO2 measured by portable capnometer and the arterial PCO2 in spontaneously breathing patients. Respiratory Medicine, 97, 476-481. doi:10.1053/rmed.2002.1468
[32] Fletcher, R. (1991) The relationship between the arterial to end-tidal PCO2 difference and hemoglobin saturation in patients with congenital heart disease. Anesthesiology, 75, 210-221. doi:10.1097/00000542-199108000-00007
[33] Short, J.A., Paris, S.T., Booker, P.D. and Fletcher, R. (2001) Arterial to end-tidal carbon dioxide tension difference in children with congenital heart disease. British Journal of Anaesthesia, 86, 349-353. doi:10.1093/bja/86.3.349

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.