Dielectric Relaxation in Complex Perovskite Oxide Sr(Gd0.5Nb0.5)O3

Abstract

The complex perovskite oxide a strontium gadolinium niobate (SGN) synthesized by solid-state reaction technique has single phase with tetragonal structure. X-ray diffraction (XRD) technique and scanning electron microscopy (SEM) were used to study the structural and microstructural properties of the ceramics, respectively. The XRD patterns of SGN at room temperature show a tetragonal structure. Studies of the dielectric constant and dielectric loss of compound as a function of frequency (50 Hz to 1 MHz) at room temperature, and as a function of temperature (60°C to 420°C) indicate polydispersive nature of the material. The logarithmic angular frequency dependence of the loss peak is found to obey the Arrhenius law with activation energy ~0.18 eV. The small value of activation energy of the compound (~0.18 eV) can be explained by mixed ionic-polaronic conductivity mechanism. The grain size of the pellet sample was found to be 1.92 μm. The frequency-dependant electrical data are analyzed in the framework of conductivity and electric modulus formalisms. The complex plane impedance plot shows the grain boundary contribution for higher value of dielectric constant in the law frequency region.

Share and Cite:

P. Kumar, A. Kumar Sharma, B. Prasad Singh, T. Prasad Sinha and N. Kumar Singh, "Dielectric Relaxation in Complex Perovskite Oxide Sr(Gd0.5Nb0.5)O3," Materials Sciences and Applications, Vol. 3 No. 6, 2012, pp. 369-376. doi: 10.4236/msa.2012.36053.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. E. Lines and A. M. Glass, “Principles and Applications of Ferroelectrics and Related Materials,” Clarendon, Oxford, 2001.
[2] J. F. Scott, “Ferroelectric Memories,” Springer, Berlin, 2000.
[3] O. Auciello, J. F. Scott and R. Ramesh, “The Physics of Ferroelectric Memories,” Physics Today, Vol. 51, No. 7, 1998, p. 22. doi:10.1063/1.882324
[4] A. K. Singh, S. K. Barik, R. N. P. Choudhary and P. K. Mahapatra, “Ac Conductivity and Relaxation Mechanism in Ba0.9Sr0.1TiO3,” Journal of Alloys and Compounds, Vol. 479, No. 1-2, 2009, pp. 39-42. doi:10.1016/j.jallcom.2008.12.130
[5] F. Galasso and J. Pyle, “Ordering in Compounds of the A(B'0.33Ta0.67)O3 Type,” Inorganic Chemistry, Vol. 2, No. 3, 1963, pp. 482-484. doi:10.1021/ic50007a013
[6] F. Galasso and J. Pinto, “Growth of Single Crystals of Ba(B′0.33Ta0.67)O3 Perovskite-Type Compounds,” Nature, Vol. 207, 1965, pp. 70-72. doi:10.1038/207070b0
[7] E. L. Colla, I. M. Reaney and N. Setter, “Effect of Structural Changes in Complex Perovskite on the Temperature Coefficient of the Relative Permittivity,” Journal of Applied Physics, Vol. 74, No. 5, 1993, pp. 3414-3425. doi:10.1063/1.354569
[8] M. Onada, J. Kuwata, K. Toyama and S. Nomura, “Ba (Zn1/3Nb2/3O3-Sr(Zn1/3Nb2/3)O3, Solid Solution Ceramics with Temperature Stable High Dielectric Constant and Low Microwave Loss,” Japanese Journal of Applied Physics, Vol. 21, 1982, pp. 1707-1710. doi:10.1143/JJAP.21.1707
[9] E. Graado, O. Moreno, A. Gracia, J. A. Sanjurjo, C. Rettori, I. Torriani, S. Oseroff, J. J. Neumeier, K. J. McClallan, S. W. Cheong and Y. Tokura, “Phonon Raman Scattering in R1-xAxMnO3+δ (R = La, Pr; A = Ca, Sr),” Physical Review B, Vol. 58, No. 17, 1998, pp. 11435-11440. doi:10.1103/PhysRevB.58.11435
[10] N. Ortega, A. Kumar, P. Bhattacharya, S. B. Majumder and R. S. Katiyar, “Impedance Spectroscopy of Multiferroic PbZrxTi1?xO3/CoFe2O4 Layered Thin Films,” Physical Review B, Vol. 77, No. 1, pp. 14111-14120. doi:10.1103/PhysRevB.77.014111
[11] D. Perez-Coll, D. Marrero-Lopez, P. Nunez, S. Pinol and J. R. Frade, “Grain Boundary Conductivity of Ce0.8Ln0.2 O2-δ Ceramics (Ln = Y, La, Gd, Sm) with and without Co-Doping,” Electrochimica Acta, Vol 51, No. 28, 2006, pp. 6463-6469. doi:10.1016/j.electacta.2006.04.032
[12] S. Saha and T. P. Sinha, “Dielectric Relaxation in SrFe1/2 Nb1/2O3,” Journal of Applied Physics, Vol. 99, No. 1, 2006, Article ID: 014109. doi:10.1063/1.2160712
[13] A. Shukla, R. N. P. Choudhary and A. K. Thakur, “Thermal, Structural and Complex Impedance Analysis of Mn4+ Modified BaTiO3 Electroceramic,” Journal of Physics and Chemistry of Solids, Vol. 70, No. 11, 2009, pp. 1401-1407. doi:10.1016/j.jpcs.2009.08.015
[14] R. J. Cava, “Dielectric Materials for Applications in Microwavecommunications,” Journal of Materials Chemistry, Vol. 11, 2001, pp. 54-62. doi:10.1039/b003681l
[15] U. Intatha, S. Eitssayeam, K. Pengpat, J. D. MacKenzie and T. T. Kenneth, “Dielectric Properties of Low Temperature Sintered LiF Doped BaFe0.5Nb0.5O3,” Materials Letters, Vol. 61, No. 1, 2007, pp. 196-200. doi:10.1016/j.matlet.2006.04.030
[16] F. Roulland, R. Terras, G. Allainmat, M. Pollet and S. Marinel, “Lowering of BaB’1/3B”2/3 Complex Perovskite Sintering Temperature by Lithium Salt Additin,” Journal of the European Ceramic Society, Vol. 24, No. 6, 2004, pp. 1019-1023. doi:10.1016/S0955-2219(03)00553-3
[17] S. Priya, A. Ando and Y. Sakebe, “Non-Lead Perovskite Materials Ba(Li1/4Nb3/4)O3 and Ba(Cu1/3Nb2/3)O3,” Journal of Applied Physics, Vol. 94, No. 2, 2003, pp. 1171-1177. doi:10.1063/1.1585121
[18] I. Levin, J. Y. Chan, J. E. Maslar and T. A. Vanderah, “Phase Transitions and Microwave Dielectric Properties in the Perovskite-Like Ca(Al0.5Nb0.5)O3-CaTiO3 System,” Journal of Applied Physics, Vol. 90, No. 2, 2001, pp. 904-914. doi:10.1063/1.1373705
[19] R. Zurmuhlen, J. Petzelt, S. Kamba, V. V. Voitsekhovskii, E. Colla and N. Setter, “Dielectric Materials for Wireless Communication,” Journal of Applied Physics, Vol. 77, 1995, p. 5341.
[20] R. Zurmuhlen, J. Petzelt, S. Kamba, G. Kozlov, A. Volkov, B. Gorshunov, D. Dube, A. Tagantsev and N. Setter, “Dielectric Spectroscopy of Ba(B1/2’B1/2”)O3 complex Perovskite Ceramics: Correlations between Ionic Parameters and Microwave Dielectric Properties. II. Studies Below the Phonon Eigenfrequencies (102 -1012 Hz),” Journal of Applied Physics, Vol. 77, No. 10, 1995, pp. 5351-5364. doi:10.1063/1.359290
[21] S. Saha and T. P. Sinha, “Structural and Dielectric Studies of Ba(Fe0.5Nb0.5)O3,” Journal of Physics: Condensed Matter, Vol. 14, No. 2, 2002, pp. 249-258. doi:10.1088/0953-8984/14/2/311
[22] N. K. Singh, P. Kumar, H. Kumar and R. Rai, “Structural and Dielectric Properties of Dy2(Ba0.5R0.5)2O7 (R = W, Mo) Ceramics,” Advanced Materials Letters, Vol. 1, 2010, pp. 79-82. doi:10.5185/amlett.2010.3102
[23] N. K. Singh, P. Kumar, O. P. Roy and R. Rai, “Structural, and Dielectric Properties of Eu2(B’0.5 B”0.5)2O7 (B’ = Ba; B” = Mo, W) Ceramics,” Journal of Alloys and Compounds, Vol. 507, No. 2, 2010, pp. 542-546. doi:10.1016/j.jallcom.2010.08.015
[24] N. K. Singh, R. N. P. Choudhary and B. Banarji, “Dielectric and Electrical Characteristics of Nd2(Ba0.5R0.5)2O7 (R = W, Mo) Ceramics,” Physica B: Condensed Matter, Vol. 403, No. 10-11, 2008, pp. 1673-1677. doi:10.1016/j.physb.2007.09.083
[25] P. Kumar, B. P. Singh, T. P. Sinha and N. K. Singh, “Ac Conductivity and Dielectric Relaxation in Ba(Sm1/2Nb1/2) O3, Ceramic,” Physica B: Condensed Matter, Vol. 406, No. 2, 2011, pp. 139-143. doi:10.1016/j.physb.2010.09.019
[26] N. K. Singh, P. Kumar and R. Rai, “Study of Structural, Dielectric and Electrical Behavior of (1?x)Ba(Fe0.5Nb0.5) O3–xSrTiO3 Ceramics,” Journal of Alloys and Compounds, Vol. 509, No. 6, 2011. pp. 2957-2963. doi:10.1016/j.jallcom.2010.11.168
[27] P. Kumar, B. P. Singh, T. P. Sinha and N. K. Singh, “X-Ray and Electrical Properties of Ba(Gd0.5Nb0.5)O3 Ceramic,” Advanced Materials Letters, Vol. 2, No. 1, 2011, p. 76. doi:10.5185/amlett.2010.11176
[28] N. K. Singh, P. Kumar and R. Rai, “Comparative Study of Structure, Dielectric and Electrical Behavior of Ba (Fe0.5Nb0.5)O3 Ceramics and Their Solid Solutions with BaTiO3,” Advanced Materials Letters, Vol. 2, No. 3, 2011, pp. 200-205. doi:10.5185/amlett.2010.11178
[29] N. K. Singh and P. Kumar, “Studies of Structural and Electrical Behavior of Samarium Barium Tungstate Ceramics,” Journal of Advanced Dielectrics, Vol. 1, No. 4, 2011, pp. 465-470. doi:10.1142/S2010135X11000495
[30] N. K. Singh, P. Kumar, A. K. Sharma and R. N. P. Choudhary, “Structural and Impedance Spectroscopy Studies of Ba(Fe0.5Nb0.5)O3-SrTiO3 Ceramic System,” Materials Science and Applications, Vol. 2, No. , 2011, pp. 1593-1600. doi:10.4236/msa.2011.211213
[31] D. K. Mahato, A. Dutta and T. P. Sinha, “Dielectric Relaxation and Ac Conductivity of Double Perovskite Oxide Ho2ZnZrO6,” Physica B: Condensed Matter, Vol. 406, No. 13, 2011, pp. 2703-2708. doi:10.1016/j.physb.2011.04.012
[32] R. N. P. Choudhary, D. K. Pradhan, C. M. Tirado, G. E. Bonilla and R. S. Katiyar, “Structural, Dielectric and Impedance Properties of Ca(Fe2/3W1/3)O3 Nanoceramics,” Physica B, Vol. 393, No. 1-2, 2007, pp. 24-31. doi:10.1016/j.physb.2006.12.006
[33] A. Dutta, C. Bharti and T. P. Sinha, “AC Conductivity and Dielectric Relaxation in CaMg1/3Nb2/3O3,” Materials Research Bulletin, Vol. 43, No. 5, 2008, pp. 1246-1254. doi:10.1016/j.materresbull.2007.05.023
[34] D. C. Sinclair and A. R. West, “Impedance and modulus Spectroscopy of Semiconducting BaTiO3 Showing Positive Temperature Coefficient of Resistance,” Journal of Applied Physics, Vol. 66, No. 8, 1989, pp. 3850-3856. doi:10.1063/1.344049
[35] I. M. Hodge, M. D. Ingram and A. R.West, “A New Method for Analysing the a.c. Behaviour of Polycrystalline Solid Electrolytes,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 58, No. 2, 1975, pp. 429-432. doi:10.1016/S0022-0728(75)80102-1
[36] G. Deng, G. Li, A. Ding and Q. Yin, “Evidence for Oxygen Vacancy Including Spontaneous Normal-Relaxor Transition in Complex Perovskite Ferroelectrics,” Applied Physics Letters, Vol. 87, No. 192, 2005, p. 905.
[37] A. Molak, E. Talik, M. Kruczek, M. Plauch, A. Ratuszna and Z. Ujma, “Characterisation of Pb(Mn1/3Nb2/3)O3 Ceramics by SEM, XRD, XPS and Dielectric Permittivity Tests,” Materials Science and Engineering: B, Vol. 128, No. 1-3, 2006, pp. 16-24. doi:10.1016/j.mseb.2005.11.011
[38] E. F. Hairetdinov, N. F. Uvarov, H. K. Patel and S. W. Martin, “ Estimation of the Free Charge Carrier Concentration in Fast Ion Conducting Na2Sb2S3 Glasses from an Analysis of the Frequency Dependent Conductivity,” Physical Review B, Vol. 50, No. 18, 1994, pp. 13259-13266. doi:10.1103/PhysRevB.50.13259

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.