The CD133/1+ cell subset from human subcutaneous adult fat retains hemogenic potential

Abstract

Research has shown that cells from adult fat tissue can effect long-term blood reconstitution. Fat-derived multipotentiality was ascribed to CD34+ perivascular populations from its prominent microvasculature, that represent mostly non-hemogenic, mesenchymal cells, although this tissue contains a CD34+45+ subset committed to a hemogenic fate. Here, in order to analyze cell subsets presenting hemogenic capabilities within fat, CD133/1+ and pericytes, the latter defined by CD140b (PDGFRb, Platelet-Derived Growth Factor Receptor Beta) expression, were immunomagnetically selected from stromal-vascular fractions (SVF). In Vitro Colony Forming Unit (CFU) assays were negative for CD140b+ pericytes and positive for CD133/1+ cells when a prolonged CFU assay was performed, revealing fat as another store of primitive progenitors that retain hemogenic potential.

Share and Cite:

Santos de Moraes, C. , Roberto Albuquerque Leal, P. , Fabiano Ferreira, D. , Serra, F. , Abdelhay, E. and Sondermann Freitas, C. (2012) The CD133/1+ cell subset from human subcutaneous adult fat retains hemogenic potential. Stem Cell Discovery, 2, 36-40. doi: 10.4236/scd.2012.22006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Freitas, C.S. and Dalmau, S.R. (2006) Multiple sources of non-embryonic multipotent stem cells: Processed lipoaspirates and dermis as promising alternatives to bone marrow-derived cell therapies. Cell and Tissue Research, 325, 403-411. doi:10.1007/s00441-006-0172-x
[2] Da Silva Meirelles, L., Chagastelles, P.C. and Nardi, N.B. (2006) Mesenchymal stem cells reside in virtually all postnatal organs and tissues. Journal of Cell Science, 119, 2204-2213. doi:10.1242/jcs.02932
[3] Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.Y., et al. (2002) Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279-4295. doi:10.1091/mbc.E02-02-0105
[4] Fraser, J.K., Wulur, I., Alfonso, Z. and Hedrick, M.H. (2006) Fat tissue: An underappreciated source of stem cells for biotechnology. Trends in Biotechnology, 24, 150-154. doi:10.1016/j.tibtech.2006.01.010
[5] Cousin, B., André, M., Arnaud, E., Pènicaud, L. and Casteilla, L. (2003) Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochemical and Biophysical Research Communications, 301, 1016-1022. doi:10.1016/S0006-291X(03)00061-5
[6] Han, J., Koh, Y.J., Moon, H.R., Ryoo, H.G., Cho, C.H., et al. (2010) Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood, 115, 957-964. doi:10.1182/blood-2009-05-219923
[7] Traktuev, D.O., Merfeld-Clauss, S., Li, J., Kolonin, M., Arap, W., et al. (2008) A population of multipotent CD34positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circulation Research, 102, 77-85. doi:10.1161/CIRCRESAHA.107.159475
[8] Lin, G., Garcia, M., Ning, H., Banie, L., Guo, Y.L., et al. (2008) Defining stem and progenitor cells within adipose tissue. Stem Cells and Development, 17, 1053-1063. doi:10.1089/scd.2008.0117
[9] Zimmerlin, L., Donnenberg, V.S., Pfeifer, M.E., Meyer, E.M., Péault, B., et al. (2010) Stromal Vascular Progenitors in Adult Human Adipose Tissue. Cytometry Part A, 77, 22-30. doi:10.1002/cyto.a.20884
[10] Sengenes, C., Lolmede, K., Zakaroff-Girard, A., Busse, R. and Bouloumié, A. (2005) Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. Journal of Cellular Physiology, 205, 114-122. doi:10.1002/jcp.20381
[11] Waller, E.K., Huang, S. and Terstappen, L. (1995) Changes in the growth properties of CD34+, CD38bone marrow progenitors during human fetal development. Blood, 86, 710-718.
[12] Florek, M., Haase, M., Marzesco, A-M., Freund, D., Ehninger, G., et al. (2005) Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell and Tissue Research, 319, 15-26. doi:10.1007/s00441-004-1018-z
[13] Gallacher, L., Murdoch, B., Wu, D.M., Karanu, F.N., Keeney, M., et al. (2000) Isolation and characterization of human CD34.2Lin2 and CD34.1Lin2 hematopoietic stem cells using cell surface markers AC133 and CD7. Blood, 95, 2813-2820.
[14] Meregalli, M., Farini, A., Belicchi, M. and Torrente, Y. (2010) CD133+ cells isolated from various sources and their role in future clinical perspectives. Expert Opinion on Biological Therapy, 10, 1521-1528.
[15] Summers, Y.J., Heyworth, C.M., de Wynter, E.A., Hart, C.A., Chang, J., et al. (2004) AC133+ G0 cells from cord blood show a high incidence of long-term culture-initiating cells and a capacity for more than 100 million-fold amplification of colony-forming cells in vitro. Stem Cells, 22, 704-715. doi:10.1634/stemcells.22-5-704
[16] Aranguren, X.L., Luttun, A., Clavel, C., Moreno, C., Abizanda, G., et al. (2007) In vitro and in vivo arterial differentiation of human multipotent adult progenitor cells. Blood, 109, 2634-2642. doi:10.1182/blood-2006-06-030411
[17] Loges, S., Fehse, B., Brockmann, M.A., Lamszus, K., Butzal, M., et al. (2004) Identification of the adult human hemangioblast. Stem Cells and Development, 13, 229-242. doi:10.1089/154732804323099163
[18] Yokomizo, T. and Dzierzak, E. (2010) Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos. Development, 137, 3651-3661. doi:10.1242/dev.051094
[19] Peichev, M., Naiyer, A.J., Pereira, D., Zhu, Z., Lane, W.J., et al. (2000) Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood, 95, 952-958.
[20] Mi?ana, M.D., Carbonell-Uberos, F., Mirabet, V., Marín, S. and Encabo, A. (2008) IFATS collection: Identification of hemangioblasts in the adult human adipose tissue. Stem Cells, 26, 2696-2704. doi:10.1634/stemcells.2007-0988
[21] Hagedorn, M., Balke, M., Schmidt, A., Bloch, W., Kurz, H., et al. (2004) VEGF coordinates interaction of pericytes and endothelial cells during vasculogenesis and experimental angiogenesis. Developmental Dynamics, 230, 23-33. doi:10.1002/dvdy.20020
[22] Amos, P.J., Shang, H., Bailey, A.M., Taylor, A., Katz, A.J., et al. (2008) IFATS collection: The role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells, 26, 2682-2690. doi:10.1634/stemcells.2008-0030
[23] Rogers, C.E., Bradley, M.S., Palsson, B.O., and Koller, M.R. (1996) Flow cytometric analysis of human bone marrow perfusion cultures: Erythroid development and relationship with burst-forming units-erythroid. Experimental Hematology, 24, 597-604.
[24] Handgretinger, R., Gordon, P.R., Leimig, T., Chen, X., Buhring, H.J., et al. (2003) Biology and plasticity of CD133+ hematopoietic stem cells. Annals of the New York Academy of Sciences, 996, 141-151. doi:10.1111/j.1749-6632.2003.tb03242.x
[25] Pozzobon, M., Piccoli, M., Ditadi, A., Bollini, S., Destro, R., et al. (2009) Mesenchymal stromal cells can be derived from bone marrow CD133+ cells: Implications for therapy. Stem Cells and Development, 18, 497-510. doi:10.1089/scd.2008.0003

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.