Sulfuric Acid Immobilized on Silica Gel as Highly Efficient and Heterogeneous Catalyst for the One-Pot Synthesis of 2,4,5-Triaryl-1H-imidazoles

Abstract

Application of sulfuric acid immobilized on silica gel as an efficient and benign catalyst has been explored in the syn-thesis of 2,4,5-Triaryl-1H-imidazoles via condensation reaction of benzil or benzoin, aldehyde and ammonium acetate. The key advantages of this process are high yields, cost effectiveness of catalyst, easy work-up, purification of products by non-chromatographic method and the reusability of the H2SO4.SiO2 catalyst.

Share and Cite:

Maleki, B. , Keshvari Shirvan, H. , Taimazi, F. and Akbarzadeh, E. (2012) Sulfuric Acid Immobilized on Silica Gel as Highly Efficient and Heterogeneous Catalyst for the One-Pot Synthesis of 2,4,5-Triaryl-1H-imidazoles. International Journal of Organic Chemistry, 2, 93-99. doi: 10.4236/ijoc.2012.21015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. M. D’Souza and T. J. J. Mueller, “Multi-Component Syntheses of Heterocycles by Transition-Metal Catalysis,” Chemical Society Reviews, Vol. 36, No. 7, 2007, pp. 1095-1108. doi:10.1039/b608235c
[2] A. Domling, “Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry,” Chemical Reviews, Vol. 106, 2006, pp. 17-89. doi:10.1021/cr0505728
[3] X. Yu, X. Pan and J. Wu, “An Efficient Route to Diverse H-pyrazolo[5,1-a]isoquinolines via Sequential Multi-Component/Cross-Coupling Reactions,” Te-trahedron, Vol. 67, No. 6, 2011, pp. 1145-1149. doi:10.1016/j.tet.2010.12.005
[4] C. Kalinski, H. Lemoine, J. Schmidt, C. Burdack, J. Kolb and M. Umkehrer, “Multicom-ponent Reactions as a Powerful Tool for Generic Drug Synthesis,” Synthesis, Vol. 24, 2008, pp. 4007-4011. doi:10.1055/s-0028-1083239
[5] L. S. Gadekar, S. R. Mane, S. S. Katkar, B. R. Arbad and M. K. Lande, “Scolecite as an Efficient Heterogeneous Catalyst for the Synthesis of 2,4,5-Triarylimidazoles,” Central European Journal of Chemi-stry, Vol. 7, 2009, pp. 550-554. doi:10.2478/s11532-009-0050-y
[6] B. Radziszewski, “Ueber die Constitution des Lophins und verwandter Verbindungen,” Chemische Berichte, Vol. 15, 1882, pp. 1493-1496. doi:10.1002/cber.18820150207
[7] F. Japp and H. Robinson, “Beziehungen der Molekularvolumina zur Atomverkettung,” Chemische Berichte, Vol. 15, 1882, pp. 1268-1270. doi:10.1002/cber.188201501272
[8] R. S. Joshi, P. G. Mand-hane, M. U. Shaikh, R. S. Kale and C. H. Gill, “Potassium Di-hydrogen Phosphate Catalyzed One-Pot Synthesis of 2,4,5-Triaryl-1H-imidazoles,” Chinese Chemical Letters, Vol. 21, No. 4, 2010, pp. 429-432. doi:10.1016/j.cclet.2009.11.012
[9] J. F. Zhou, X. G. Gong, H. Q. Zhu and F. X. Zhu, “Solvent-Free and Catalyst-Free Method for the Synthesis of 2,4,5-Triarylimidazoles under Microwave Irradiation,” Chinese Chemical Letters, Vol. 20, No. 10, 2009, pp. 1198-1120. doi:10.1016/j.cclet.2009.05.027
[10] J. F. Zhou, G. X. Gong, X. J. Sun and Y. L. Zhu, “Facile Method for One-Step Synthesis of 2,4,5-Triarylimida- zoles under Cata-lyst-Free, Solvent-Free, and Microwave-Irradiation Conditions,” Synthetic Communications, Vol. 40, 2010, pp.1134-1141. doi:10.1080/00397910903043025
[11] S. A. Siddiqui, U. C. Narkhede, S. S. Palimkar, T. Daniel, R. J. Lahoti and K. V. Srinivasan, “Room Temperature Ionic liquid Promoted Improved and Rapid Synthesis of 2,4,5-Triaryl Imidazoles from Aryl Aldehydes and 1,2- Diketones or α-Hydroxyketone,” Te-trahedron, Vol. 61, 2005, pp. 3539-3544. doi:10.1016/j.tet.2005.01.116
[12] K. F. Shelke, S. B. Sapkal and M. S. Shingare, “Ultrasound-Assisted One-Pot Synthesis of 2,4,5-Triarylimi- dazole Derivatives Catalyzed by Ceric (IV) Ammonium Nitrate in Aqueous Media,” Chinese Chemical Letters, Vol. 20, 2009, pp. 283-286. doi:10.1016/j.cclet.2008.11.033
[13] J. Sangshetti, N. Kokare, S. Kotharkara and D. J. Shinde, “One-Pot Efficient Synthesis of 2-Aryl-1-arylm ethyl-1H- benzimidazoles and 2,4,5-Triaryl-1H-imidazoles Using Oxalic Acid Catalyst,” Syn-thesis, No. 18, 2007, pp. 2829-2834.
[14] C. Yu, M. Lei, W. Su and Y. Xie, “Europium Triflate-Catalyzed One-Pot Synthesis of 2,4,5-Trisubsti- tuted-1H-imidazoles via a Three-component Condensation,” Synthetic Communications, Vol. 37, 2007, pp. 3301-3308. doi:10.1080/00397910701483589
[15] A. R. Khosropour, “Synthesis of 2,4,5-Trisubstitute dimidazoles Catalyzed by [Hmim]HSO4 as a Powerful Br?nsted Acidic Ionic liquid,” Canadian Journal of Chemistry, Vol. 86, 2008, pp. 264-269. doi:10.1139/v08-009
[16] G. V. M. Sharma, Y. Jyothi and P. S. Lakshmi, “Efficient Room-Temperature Synthesis of Tri- and Tetrasubstituted Imidazoles Catalyzed by ZrCl4,” Synthetic Communications, Vol. 36, No. 19-21, 2006, pp. 2991-2996. doi:10.1080/00397910600773825
[17] L. M. Wang, Y. H. Wang, H. Tian, Y. Yao, J. Shao and B. Liu, “Ytterbium Triflate as an Efficient Catalyst for One-Pot Synthesis of Substituted Imidazoles Through Three-Component Condensation of Benzil, Aldehydes and Ammonium Acetate,” Journal of Fluorine Chemistry, Vol. 127, No. 12, 2006, pp. 1570-1573. doi:10.1016/j.jfluchem.2006.08.005
[18] M. M. Heravi, K. Bakhtiari, H. A. Oskooie and S. Taheri, “Synthesis of 2,4,5-Triaryl-Imidazoles Catalyzed by NiCl2?6H2O Under He-terogeneous System,” Journal of Molecular Catalysis A: Chemical, Vol. 263, No. 1-2, 2007, pp. 279-281. doi:10.1016/j.molcata.2006.08.070
[19] J. N. Sangshetti, D. B. Shinde, N. D. Kokare and S. A. Kotharkar, “Sodium Bisulfite as an Efficient and Inexpensive Catalyst for the One-Pot Synthesis of 2,4,5-Tri- aryl-1H-imidazoles from Benzil or Benzoin and Aromatic Aldehydes,” Monatshefte für Chemie, Vol. 139, No. 2, 2008, pp. 125-127. doi:10.1007/s00706-007-0766-3
[20] M. Kidwai, P. Mothsra, V. Bansal and R. Goyal, “Efficient Elemental Iodine Catalyzed One-Pot Synthesis of 2,4,5-Triarylimidazoles,” Monatshefte für Chemie, Vol. 137, No. 9, 2006, pp. 1189-1194. doi:10.1007/s00706-006-0518-9
[21] J. Safari, S. D. Khalili, M. Rezaei, S. H. Banitaba and F. Meshkani, “Nanocrystalline Magnesium Oxide: A Novel and Ef?cient Catalyst for Facile Synthesis of 2,4,5- Trisubstitutedimidazole Derivatives,” Mo-natshefte für Chemie, Vol. 141, No. 12, 2010, pp. 1339-1345. doi:10.1007/s00706-010-0397-y
[22] N. D. Kokare, J. N. Sangshetti and D. B. Shinde, “One-Pot Efficient Synthesis of 2-Aryl-1-Arylmethyl- 1h-Benzimidazoles and 2,4,5-Triaryl-1h-Imidazoles Using Oxalic Acid Catalyst,” Syn-thesis, No. 18, 2007, pp. 2829-2834.
[23] A. Shaabani and A. Rahmati, “Silica Sulfuric Acid as an Efficient and Recoverable Catalyst for the Synthesis of Trisubstituted Imidazoles,” Journal of Molecular Catalysis A: Chemical, Vol. 249, No. 1-2, 2006, pp. 246-248. doi:10.1016/j.molcata.2006.01.006
[24] J. Wang, R. Mason, D. V. Derveer, F. Feng and X. R. Bu, “Convenient Preparation of a Novel Class of Imidazo[1,5-a]pyridines: Decisive Role by Ammonium Acetate in Chemoselectivity,” Journal of Organic Chemistry, Vol. 68, No. 13, 2003, pp. 5415-5418. doi:10.1021/jo0342020
[25] S. Samai, G. C. Nandi, P. Singh and M. S. Singh, “L-Proline: An Efficient Catalyst for the One-Pot Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles,” Tetrahedron, Vol. 65, No. 49, 2009, pp. 10155-10161. doi:10.1016/j.tet.2009.10.019
[26] X. C. Wang, H. P. Gong, Z. J. Quan, L. Li and H. L. Ye, “PEG-400 as an Efficient Reaction Medium for the Synthesis of 2,4,5-Triaryl-1H-Imidazoles and 1,2,4,5-Tetra- aryl-1H-Imidazoles,” Chinese Chemical Letters, Vol. 20, 2009, pp. 44-47. doi:10.1016/j.cclet.2008.10.005
[27] D. Song, C. Liu, S. Zhang and D. Luo, “One-Pot Synthesis of 2,4,5-Triarylimidazoles Catalyzed by Copper (II) Trifluoroacetate under Solvent-Free Conditions,” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, Vol. 40, No. 3, 2010, pp. 145- 147.
[28] M. V. Chary, N. C. Keerthysri, S. V. N. Vupallapati, N. Lingaiah and S. Kantevari, “Te-trabutylammoniumbromide (TBAB) in Isopropanol: An Ef?cient, Novel, Neutral and Recyclable Catalytic System for the Synthesis of 2,4,5-Trisubstitutedimidazoles,” Catalysis Communications, Vol. 9, No. 10, 2008, pp. 2013-2017. doi:10.1016/j.catcom.2008.03.037
[29] J. Safari, S. D. Khalili and S. H. Banitaba, “A Novel and an Efficient Catalyst for One-Pot Synthesis of 2,4,5-Trisubstituted Imidazoles by Using Microwave Irradiation Under Solvent-Free Conditions,” Journal of Chemical Sciences, Vol. 122, No. 3, 2010, pp. 437-441. doi:10.1007/s12039-010-0051-6
[30] S. D. Sharma, P. Haza-rika and D. Konwar, “An Efficient and One-Pot Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles Catalyzed by InCl3. 3H2O,” Tetrahedron Letters, Vol. 49, No. 14, 2008, pp. 2216- 2220. doi:10.1016/j.tetlet.2008.02.053
[31] A. R. Khosropour, “Ul-trasound-Promoted Greener Synthesis of 2,4,5-Trisubstituted Imidazoles Catalyzed by Zr(acac)4 under Ambient Conditions,” Ultrasonics Sonochemistry, Vol. 15, No. 5, 2008, pp. 659-664. doi:10.1016/j.ultsonch.2007.12.005
[32] F. K. Behbahani, T. Yektanezhad and A. R. Khorrami, “Anhydrous FePO4: A Green and Cost-Effective Catalyst for the One-Pot Three Component Synthesis of 2,4,5- Triarylated,” Heterocycles, Vol. 81, No. 10, 2010, pp. 2313-2321. doi:10.3987/COM-10-12019
[33] V. S. V. Satyanarayana and A. Sivakumar, “An Efficient and Novel One-Pot Synthesis of 2,4,5-Triaryl- 1H-imi- dazoles Catalyzed by UO2(NO3)2?6H2O under Heterogeneous Conditions,” Chem-ical Papers, Vol. 65, No. 4, 2011, pp. 519-526. doi:10.2478/s11696-011-0028-z
[34] W. M. Nelson, P. T. Anastas and T. C. Williamson, “Green Chemistry,” Oxford University Press, Oxford, 1998, p. 200.
[35] K. Tanaka and F. Toda, “Solvent-Free Organic Synthesis,” Chemical Reviews, Vol. 100, No. 3, 2000, pp. 1025- 1074. doi:10.1021/cr940089p
[36] J. H. Clark, “Solid Acids for Green Chemistry,” Accounts of Chemical Research, Vol. 35, No. 9, 2002, pp. 791-794. doi:10.1021/ar010072a
[37] A. Habibi, E. Sheikhhosseini, M. Bigdeli, S. Balalaie and E. Farrokhi, “Solvent Free Synthesis of α, α'-Bis-(substi- tuted-benzylidene)cycloalkanones Using Co-valently Anchored Sulfonic Acid on Silica Gel (SiO2-R-SO3H) as an Efficient and Reusable Heterogeneous” International Journal of Organic Chemistry, Vol. 1, 2011, pp. 143-147. doi:10.4236/ijoc.2011.14021
[38] N. C. Marziano, L. Ronchin, C. Tortato, S. Ronchin and A. Vavasori, “Selective Oxidations by Nitrosating Agents: Part 2: Oxidations of Alcohols and Ke-tones over Solid Acid Aatalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 235, 2005, pp. 26-34. doi:10.1016/j.molcata.2005.03.008
[39] A. K. Chakraborti, B. Singh, S. V. Chankeshwara and A. R. Patel, “Protic Acid Im-mobilized on Solid Support as an Extremely Efficient Recyclable Catalyst System for a Direct and Atom Economical Esterification of Carboxylic Acids with Alcohols,” Journal of Organic Chemistry, Vol. 74, No. 16, 2009, pp. 5967-5974. doi:10.1021/jo900614s
[40] J. Zhou, F. Chen, Q. B. Wang, B. Zhang, L. Y. Zhang and A. Yusulf, “H2SO4-SiO2: Highly Effi-cient and Novel Catalyst for the Ferrier-Type Glycosylation,” Chinese Chemical Letters, Vol. 21, No. 8, 2010, pp. 922-923. doi:10.1016/j.cclet.2010.03.013
[41] B. Roy and B. Mukho-padhyay, “Sulfuric Acid Immobilized on Silica: An Excellent Catalyst for Fischer Type Glycosylation,” Tetrahedron Letters, Vol. 48, No. 22, 2007, pp. 3783-3787. doi:10.1016/j.tetlet.2007.03.165
[42] B. Mukhopadhyay, “Sulfuric Acid Immobilized on Silica: An Efficient Promoter for One-Pot Acetalation-Acetylation of Sugar Derivatives,” Tetrahedron Letters, Vol. 47, No. 26, 2006, pp. 4337-4340. doi:10.1016/j.tetlet.2006.04.118

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.