Cytotoxic Activity of Thelesperma megapotamicum Organic Fractions against MCF-7 Human Breast Cancer Cell Line

Abstract

Thelesperma megapotamicum (Asteraceae) is commonly used in Argentine to treat various diseases (renal, digestive affections, and as anaesthesia). The present study showed the mechanisms involved “in vitro” cytotoxicity of T. megapotamicum Fractions. Five Fractions (F1 - F5) were separated by column chromatography (Silica gel) using hexane:diethyl ether as eluents. Viability was evaluated in Human breast carcinoma cell line (MCF-7) by staining with crystal violet. With respect to F1 Fraction treatment, the cell survival was 49.14% ± 8.87%, while the F2 and F3 ones exhibited a strong reduction of cell viability to only 26.35% ± 1.63% and 23.3%1 ± 0.53% of the control cell at 50 μg/ml, respectively. Apoptotic effect of these Fractions was detected using FITC-labeled Annexin V and propidium iodide binding assays and was confirmed by a higher proportion of apoptotic cells due to F2 and F3 treatments. T. megapotamicum active Fractions could facilitate the tumoral cells death by decreasing the activity of the enzyme Gamma-glutamyltranspeptidase and causing alteration in cell membrane sialoglycoconjugates and others involved anticancer mechanisms including apoptosis.

Share and Cite:

A. Figueroa, E. Soria, J. Cantero, M. Sanchez and M. Goleniowski, "Cytotoxic Activity of Thelesperma megapotamicum Organic Fractions against MCF-7 Human Breast Cancer Cell Line," Journal of Cancer Therapy, Vol. 3 No. 1, 2012, pp. 103-109. doi: 10.4236/jct.2012.31013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. D. Yager and N. E. Davidson, “Estrogen Carcinogenesis in Breast Cancer,” The New England Journal of Medicine, Vol. 354, No. 3, 2006, pp. 270-282. doi:10.1056/NEJMra050776
[2] A. Bermudez, M. A. Oliveira-Miranda and D. Vazquez, “La investigacion Etnobotanica Sobre Plantas Medicinales: Una Revisión de Sus Objetivos y Enfoques Actuales,” Interciencia, Vol. 30, No. 8, 2005, pp. 453-459.
[3] J. M. Cline and C. L. Hughes Jr., “Phytochemicals for the Prevention of Breast and Endometrial Cancer,” Cancer Treatment Research, Vol. 94, 1998, pp. 107-134. doi:10.1007/978-1-4615-6189-7_7
[4] L. S. Einbond, Y. Wen-Cai, K. He, H. Wu, E. Cruz, M. Roller and F. Kronenberg, “Growth Inhibitory Activity of Extracts and Compounds from Cimicifuga Species on Human Breast Cancer Cells,” Phytomedicine, Vol. 15, No. 6-7, 2008, pp. 504-511. doi:10.1016/j.phymed.2007.09.017
[5] E. L. Ratera and M. O. Ratera, “Plantas de la Flora Argentina Empleadas en Medicina Popular,” Hemisferio Sur S.A., Buenos Aires, 1980.
[6] M. Goleniowski, G. A. Bongiovanni, L. Palacio, C. O. Nunez and J. J. Cantero, “Medicinal plants from the ‘Sierra de Comechingones,’ Argentina,” Journal of Ethnopharmacoly, Vol. 107, No. 3, 2006, pp. 324-341. doi:10.1016/j.jep.2006.07.026
[7] E. L. Ariza, “Tratamiento Taxonomico: Descripcion de Familias, Generos y Especies; Asteraceae,” In: G. E. Barboza, J. J. Cantero, C. O. Nunez and L. Ariza Espinar, Eds., Flora medicinal de la Provincia de Cordoba (Argentina), Pteridofitas y Antófitas Silvestres o Naturalizadas, Museo Botánico, Córdoba, 2006, pp. 475-477.
[8] A. Ateya, T. Okarter, J. Knapp, P. Schiff Jr. and D. Slatkin, “Flavonoids of Thelesperma megapotamicum,” Planta Medica, Vol. 45, No. 8, 1982, pp. 247-248. doi:10.1055/s-2007-971384
[9] V. Pathak, F. Bohlmann, R. King and H. Robinson, “Chemotaxonomy of the Genus Thelesperma,” Revista Latinoamericana de Quimica, Vol. 18, 1987, pp. 28-29.
[10] M. Hertog, P. Hollman and V. De Putte, “Content of Potentially Anticarcinogenic Flavonoids of Tea Infusions, Wines and Fruit Juices,” Journal of Agricultural and Food Chemistry, Vol. 41, No. 8, 1993, pp.1242-1246. doi:10.1021/jf00032a015
[11] P. Hollman, M. Hertog and M. Katan, “Analysis and Health Effects of Flavonoids,” Food Chemistry, Vol. 57, No. 1, 1996, pp. 43-46. doi:10.1016/0308-8146(96)00065-9
[12] L. G. Korkina, “Phenylpropanoids as Naturally Occurring Antioxidants: From Plant Defense to Human Health,” Cellular and Molecular Biology, Vol. 53, No. 1, 2007, pp. 15-25.
[13] A. R. Chowdhury, S. Sharma, S. Mandal, A. Goswami, S. Mukhopadhyay and H. K. Majumder, “Luteolin, an Emerging Anti-Cancer Flavonoid, Poisons Eukaryotic DNA Topoisomerase I,” Biochemical Journal, Vol. 366, No. 2, 2002, pp. 653-661. doi:10.1042/BJ20020098
[14] K. Horvathova, L. Novotny, D. Tothova and A. Vachalkova, “Determination of Free Radical Scavenging Activity of Quercetin, Rutin, Luteolin and Apigenin in H2O2-Treated Human ML Cell K562,” Neoplasma, Vol. 51, No. 5, 2004, pp. 395-399.
[15] K. Hossain, A. A. Akhand, M. Kato, J. Du, K. Takeda, J. H. Wu, K. Takeuchi, W. Liu, H. Suzuki and I. Nakashima, “Arsenite Induces Apoptosis of Murine T Lymphocytes through Membrane Raft-Linked Signaling for Activation of c-Jun Amino-Terminal Kinase,” Journal of Immunology, Vol. 165, No. 8, 2000, pp. 4290-4297.
[16] M. E. Pasqualini, V. L. Heyd, P. Manzo and A. R. Eynard, “Association between E-Cadherin Expression by Human Colon, Ladder and Breast Cancer Cells and the 13-HODE: 15-HETE Ratio. A Possible Role of Their Metastatic Potential,” Prostaglandins, Leukotrienes, and Essential Fatty Acids, Vol. 68, No. 1, 2003, pp. 9-16. doi:10.1016/S0952-3278(02)00230-2
[17] G. A. Bongiovanni, J. J. Cantero, A. Eynard and M. E. Goleniowski, “Organic Extracts of Larrea divaricata Cav. Induced Apoptosis on Tumoral MCF7 Cells with an Higher Cytotoxicity Than Nordihydroguaiaretic Acid or Paclitaxel,” Journal of Experimental Therapeutics & Oncology, Vol. 7, No. 1, 2008, pp. 1-7.
[18] G. Szasz, “A Kinetic Photometric Method for Serum Gamma-Glutamyltranspeptidase,” Clinical Chemistry, Vol. 15, No.2, 1969, pp. 124-136.
[19] T. Miettinen and I. T. Takki-Luukkainen, “Use of Butyl Acetate in the Determination of Sialic Acid,” Acta Chemical Scandinava, Vol. 13, 1959, pp. 856-858. doi:10.3891/acta.chem.scand.13-0856
[20] P. L. Quiroga, A. R. Eynard, E. A. Soria and M. A. Valentich, “Interaction between Retinoids and Eicosanoids: Their Relevance to Cancer Chemoprevention,” Current Nutrition & Food Science, Vol. 5, No. 2, 2009, pp. 126-133. doi:10.2174/157340109788185553
[21] N. S. Yaacob, N. Hamzah, N. Nursyazni, N. M. Kamal, S. A. Zainal Abidin, C. S. Lai, V. Navaratnam and M. N. Norazmi, “Anticancer Activity of a Sub-Fraction of Dichloromethane Extract of Strobilanthes crispus on Human Breast and Prostate Cancer Cells in Vitro,” BMC Complementary and Alternative Medicine, Vol. 10, 2010, pp. 42-55. doi:10.1186/1472-6882-10-42
[22] M. H. Hanigan, H. F. Frierson Jr., P. E. Swanson and B. R. De Young, “Altered Expression of Gamma-Glutamyltranspeptidase in Human Tumors,” Human Pathology, Vol. 30, No. 3, 1999, pp. 300-305. doi:10.1016/S0046-8177(99)90009-6
[23] A. Pompella, A. Corti, A. Paolicchi, C. Giommarelli and F. Zunino, “g-Glutamyltransferase, Redox Regulation and Cancerdrug Resistance,” Current Opinion in Pharmacology, Vol. 7, No. 4, 2007, pp. 360-366. doi:10.1016/j.coph.2007.04.004
[24] S. Dominici, L. Pieri, M. Comporti and A. Pompella, “Possible Role of Membrane Gamma-Glutamyltransferase Activity in the Facilitation of Transferrin-Dependent and -Independent Iron Uptake by Cancer Cells,” Cancer Cell International, Vol.3, No. 7, 2003, pp. 1-8. doi:10.1186/1475-2867-3-7
[25] T. H. Rasmussen, S. J. The, P. Bjerregaard and B. Korsgaard, “Anti-Estrogen Prevents Xenoestrogen-Induced Testicular Pathology of Eelpout (Zoarces viviparus),” Aquatic Toxicology, Vol. 72, No. 3, 2005, pp.177-194. doi:10.1016/j.aquatox.2004.12.003
[26] S. J. Chinta, J. M Kumar, H. Zhang, H. J. Forman and J. K. Andersen, “Upregulation of Gamma-Glutamyltranspeptidase Activity Following Glutathione Depletion Has a Compensatory Rather Than an Inhibitory effect on Mitochondrial Complex I Activity: Implications for Parkinson’s Disease,” Free Radical Biology & Medicine, Vol. 40, No. 9, 2006, pp. 1557-1563. doi:10.1016/j.freeradbiomed.2005.12.023
[27] R. L. Proia, “Glycosphingolipid Functions: Insights from Engineered Mouse Models,” Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 358, No. 1433, 2003, pp. 879-883. doi:10.1098/rstb.2003.1268
[28] O. Sergent, M. Pereira, C. Belhomme, M. Chevanne, L. Huc, D. Lagadic-Gossmann, “Role for Membrane Fluidity in Ethanol-Induced Oxidative Stress of Primary Rat Hepatocytes,” The Journal of Pharmacology and Experimental Therapeutics, Vol. 313, No. 1, 2005, pp. 104-111. doi:10.1124/jpet.104.078634
[29] S. Narayanan, “Sialic Acid as a Tumor Marker,” Annals of Clinical and Laboratory Science, Vol. 24, No. 4, 1994, pp. 376-384.
[30] G. N. Raval, L. J. Parekh, D. D. Patel, F. P. Jha, R. N. Sainger and P. S. Patel, “Clinical Usefulness of Alterations in Sialic Acid, Sialyltransferase and Sialoproteins in Breast Cancer,” Indian Journal of Clinical Biochemistry, Vol. 19, No. 2, 2004, pp. 60-71. doi:10.1007/BF02894259
[31] A. Kobata and S. Takasaki, “Structural Characterization of Oligo-Saccharides from Glycoproteins,” In: M. Fukuda, and A. Kobata, Eds., Glycobiology: A practical approach, Oxford University Press, New York, 1993, pp. 165-185.
[32] A. Varki, “Biological Roles of Oligosaccharides: All of the Theories Are Correct,” Glycobiology, Vol. 3, No. 2, 1993, pp. 97-130. doi:10.1093/glycob/3.2.97
[33] S. Hakomori, “Glycosylation Defining Cancer Malignancy: New Wine in an Old Bottle,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 99, No. 16, 2002, pp. 10231-10233. doi:10.1073/pnas.172380699
[34] N. M Varki and A. Varki, “Diversity in Cell Surface Sialic Acid Presentations: Implications for Biology and Disease,” Laboratory Investigation, Vol. 87, No. 9, 2007, pp. 851-857. doi:10.1038/labinvest.3700656
[35] H. L. Liu, W. B. Jiang and M. X. Xie, “Flavonoids: Recent Advances as Anticancer Drugs,” Recent Patents on Anti-Cancer Drug Discovery, Vol. 5, No. 2, 2010, pp. 152-164. doi:10.2174/157489210790936261

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.