Simulating Site-Specific Effects of a Changing Climate on Jack Pine Productivity Using a Modified Variant of the CROPLANNER Model
Peter F. Newton
.
DOI: 10.4236/ojf.2012.21004   PDF    HTML     3,803 Downloads   6,837 Views   Citations

Abstract

This study evaluated the site-specific effects of projected future climate conditions on the productivity of jack pine (Pinus banksiana Lamb.) plantations over the next 50 years (2011-2061). Climatic parameters as predicted by the Canadian Global Climate Model in association with a regional spatial climatic model, under 3 emissions scenarios (no change (NC), B1 and A2), were used as input values to a biophysical-based site-specific height-age model that was integrated into the CROPLANNER model and associated algorithm. Plantations managed under a basic silvicultural intensity on two site qualities at each of two geographically separated sites (northeastern and northwestern Ontario, Canada) were assessed. The results indicated that the stands situated on low-to-medium quality sites at both locations were largely unaffected by the predicted increase in temperature and precipitation rates. Conversely, however, stands situated on good-to-excellent quality sites grown under the B1 and A2 scenarios experienced consequential declines in stand development rates resulting in decreases in rotational mean sizes, biomass yields, recoverable end-product volumes, and economic worth. In addition to providing a plausible range of site-specific climate change outcomes on jack pine productivity within the central portion of the species range, these results suggest that future predictions that do not account for potential climate changes effects may overes- timate merchantable productivity on the higher site qualities by approximately 15%. As demonstrated, in- corporating biophysical-based site index functions within existing forest productivity models may repre- sent a feasible approach when accounting for climate change effects on yield outcomes of boreal species.

Share and Cite:

Newton, P. (2012). Simulating Site-Specific Effects of a Changing Climate on Jack Pine Productivity Using a Modified Variant of the CROPLANNER Model. Open Journal of Forestry, 2, 23-32. doi: 10.4236/ojf.2012.21004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Bell, W. F., Parton, J., Stocker, N., Joyce, D., Reid, D., Wester, M., Stinson, A., Kayahara, G., & Towill. B. (2008). Developing a silvicultural framework and definitions for use in forest management planning and practice. Forestry Chronicle, 84, 678-693.
[2] Boisvenue, C., & Running, S. W. (2006). Impacts of climate change on natural forest productivity—Evidence since the middle of the 20th century. Global Change Biology, 12, 1-21.
[3] Carmean, W. H., Niznowski, G. P., & Hazenberg, G. (2001). Polymorphic site index curves for jack pine in Northern Ontario. Forestry Chronicle, 77, 141-150.
[4] Colombo, S. J., McKenney, D. W., Lawrence, K. M., & Gray, P. A. (2007). Climate change projections for Ontario: A practical guide for policymakers and planners. Ontario Ministry of Natural Resources, Applied Research Development Branch, Peterborough Ontario. Climatic Change Research Report CCRR-05.
[5] Environment Canada (2011). The third generation coupled global climate model. URL (last checked 15 July 2011) http://www.ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=1299529F-1
[6] Fleming, R. A. (2000). Climate change and insect disturbance regimes in Canada’s boreal forests. World Resource Review, 12, 520-555.
[7] Girardin, M. P., Raulier, F., Bernier, P. Y., & Tardif, J. C. (2008). Response of tree growth to a changing climate in boreal central Canada: A comparison of empirical, process-based, and hybrid modeling approaches. Ecological Modelling, 213, 209-228. doi:10.1016/j.ecolmodel.2007.12.010
[8] Girardin, M. P., Bernier, P. Y., Raulier, F., Tardif, J. C., Conciatori, F., & Guo, X. J. (2011). Testing for a CO2 fertilization effect on growth of Canadian boreal forests. Journal of Geophysical Research, 116, 1-16. doi:10.1029/2010JG001287
[9] IPCC (Intergovernmental Panel on Climate Change) (2007). Climate change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Geneva: IPCC.
[10] Ise, T., & Moorcroft, P. R. (2010). Simulating boreal forest dynamics from perspectives of ecophysiology, resource availability, and climate change. Ecological Research, 25, 501-511. doi:10.1007/s11284-009-0680-8
[11] Kurz, W. A., Dymonda, C. C., White, T. M., Stinson, G., Shaw, C. H., Rampley, G. J., Smytha, C., Simpson, B. N., Neilson, E. T., Trofymow, J. A., Metsaranta, J., & Apps, M. J. (2009). CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecological Modeling, 220, 480-504. doi:10.1016/j.ecolmodel.2008.10.018
[12] Loustau, D., Bosc, A., Colin, A., Ogée, J., Davi, H., Fran?ois, C., Dufrêne, E., Déqué, M., Cloppet, E., Arrouays, D., Le Bas, C., Saby, N., Pignard, G., Hamza, N., Granier, A., Bréda, N., Ciais, P., Viovy, N., & Delage, F. (2005). Modeling climate change effects on the potential production of French plains forests at the sub-regional level. Tree Physiology, 25, 813-823.
[13] Malone, E., & Engle, N. (2011). Evaluating regional vulnerability to climate change: Purposes and methods. WIRES Climatic Change, 2, 462-474. doi:10.1002/wcc.116
[14] McKenney, D., Papadopol, P., Campbell, K., Lawrence, K., & Hutchinson, M. (2006). Spatial models of Canada- and North America-wide 1971/2000 minimum and maximum temperature, total precipitation and derived bioclimatic variables. Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario. Frontline Technical Note No. 106.
[15] Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698-702. doi:10.1038/386698a0
[16] Nakicenovic, N., Alcamo, J., Davis, G., Vries, B. D., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., Rovere, E. L. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., Rooijen, S. V., Victor, N., & Dadi, Z. (2000). IPCC Special Report on Emissions Scenarios (SRES). New York, NY: Cambridge University Press.
[17] Newton P. F. (2009). Development of an integrated decision-support model for density management within jack pine stand-types. Ecological Modelling, 220, 3301-3324. doi:10.1016/j.ecolmodel.2009.07.025
[18] OMNR (Ontario Ministry of Natural Resources) (2008). Annual report on forest management 2006/07. URL (last checked August 10, 2011) http://www.web2.mnr.gov.on.ca/mnr/forests/public/publications/Annual%20Reports/2006-2007/English/AR06_07_file_one.pdf
[19] O’Neill, G. A., & Nigh, G. (2011). Linking population genetics and tree height growth models to predict impacts of climate change on forest production. Global Change Biology, 17, 3208-3217. doi:10.1111/j.1365-2486.2011.02467.x
[20] Parker, W. C., Colombo, S. J., Cherry, M. L., Greifenhagen, S., Papodopol, C., Flannigan, M. D., McAlpine, R. S., & Scarr, T. (2000). Third Millennium Forestry: What climate change might mean to forests and forest management in Ontario. Forestry Chronicle, 76, 445-463.
[21] Rowe J. S. (1972). Forest regions of Canada. Government of Canada, Department of Environment, Canadian Forestry Service, Ottawa, Ontario. Publication No. 1300.
[22] Rudolf, R. D., & Yeatman, C. W. (1982). Genetics of jack pine (Pinus banksiana). Government of the United States of America, Department of Agriculture, Forest Service, Lake States Forest Experimental Station, St. Paul, Minnesota, Research Paper WO-38.
[23] Sharma, M., Subedi, N., Ter-Mikaelian, M., & Parton, J. (2012). Modeling stand height/Site Index of plantation grown jack pine and black spruce trees in a changing climate. In preparation.
[24] Shaw, C., Chertov, O., Komarov, A., Bhatti, J., Nadporozskaya, M., Apps, M., Bykhovets, S., & Mikhailov, A. (2006). Application of the forest ecosystem model EFIMOD 2 to jack pine along the Boreal Forest Transect Case Study. Canadian Journal of Soil Science, 86, 171-185. doi:10.4141/S05-079
[25] Zhang, S. Y., & Koubaa, A. (2008). Softwoods of Eastern Canada: Their silvics characteristics, manufacturing and end-uses. Special Publication SP-526E, FPInnovations, Forintek.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.