Compact Bluetooth/UWB Antenna with Multi-Band Notched Characteristics

Abstract

A small-sized, low-profile, and planar dual band antenna for Bluetooth (2.4 - 2.484 GHz) and ultra-wideband (UWB) (3.1 - 10.6 GHz) with multi-band notched antennas is presented. Two antennas A and B with different types of slots are used to obtain tri-band notched characteristic. In antenna A notched bands, 5 - 6 GHz for WLAN, and 3.3 - 4 GHz for WiMAX, are achieved using a U-slot in ground structure and in the radiating patch. In antenna B two notched bands at 3.3 - 4 GHz, for WiMAX and 7.2 GHz for C-band satellite communication systems are achieved by using a U-slot in ground structure and a H-shaped slot in the radiating patch. The radiation characteristics of the two antennas are calculated using a commercial EM simulator based on Finite Element Method (FEM) and the Finite Integration Technique (FIT). The two antennas show acceptable gain flatness with stable omnidirectional radiation patterns across the integrated Bluetooth and UWB bands.

Share and Cite:

A. Shaker, S. Zainud-Deen, K. Mahmoud and S. Ibrahem, "Compact Bluetooth/UWB Antenna with Multi-Band Notched Characteristics," Journal of Electromagnetic Analysis and Applications, Vol. 3 No. 12, 2011, pp. 512-518. doi: 10.4236/jemaa.2011.312078.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. A. Eldek, A. Z. Elsherbeni and C. E. Smith, “Rectangular Slot Antenna with Patch Stub for Ultra Wideband Applications and Phased Array Systems,” Progress in Electromagnetic Research, Vol. 53, 2005, pp. 227-237. doi:10.2528/PIER04092701
[2] S. H. Choi, J. K. Park, S. K. Kim and J. Y. Park, “A New Ultra-Wideband Antenna for UWB Applications,” Microwave and Optical Technology Letters, Vol. 40, No. 5, 2004, pp. 399-401. doi:10.1002/mop.11392
[3] M. Gopikrishna, D. D. Krishna, C. K. Anandan, P. Mohanan and K. Vasudevan, “Design of a Compact Semi- Elliptic Monopole Slot Antenna for UWB Systems,” IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 2009, pp. 1834-1837. doi:10.1109/TAP.2009.2015850
[4] R. A. Al Essa, “Analysis of Ultra Wide-Band Metal Plate Monopole Antenna Using Finite Difference Time Domain (FDTD) Method,” MSc. Thesis, Helwan Univesity, Helwan, 2010.
[5] Q.-X. Chu and Y.-Y. Yang, “3.5/5.5 GHz Dual Band- Notch Ultra-Wideband Antenna,” Electronics Letters, Vol. 44, No. 3, 2008, pp. 172-174. doi:10.1049/el:20083095
[6] K. Yin and J. P. Xu, “Compact Ultra-Wideband Antenna with Dual Band-Stop Characteristic,” Electronics Letters, Vol. 44, No. 7, 2008, pp. 453-454. doi:10.1049/el:20080484
[7] J.-Y. Deng, Y.-Z. Yin, Sh.-G. Zhou and Q.-Zh. Liu, “Compact Ultra-Wideband Antenna with Tri-Band Notched Characteristic,” Electronics Letters, Vol. 44, No. 21, 2008, pp. 1231-1233. doi:10.1049/el:20081660
[8] Q. Zhao, S.-X. Gong, W. Jiang, B. Yang and J. Xie, “Compact Wide-Slot Tri-Band Antenna for WLAN/ WiMAX Applications,” Progress in Electromagnetic Research Letters, Vol. 18, 2010, pp. 9-18. doi:10.2528/PIERL10081601
[9] S. H. Zainud-Deen, R. A. Al-Essa and S. M. M. Ibrahem, “Ultrawideband Printed Elliptical Monopole Antenna with Four Band-Notch Characteristics,” IEEE Antennas and Propagation Society International Symposium (APS/URSI), Toronto, 11-17 July 2010.
[10] C. Kim, H. Ahn, J. Kim, X. Cheng and Y.-K. Yoon, “A Compact 5 GHz WLAN Notched Bluetooth/UWB Antenna,” IEEE Antennas and Propagation Society International Symposium (APS/URSI), Toronto, 11-17 July 2010.
[11] S. K. Mishra, R. Gupta, A. Vaidya and J. Mukherjee, “Printed Fork Shaped Dual Band Monopole Antenna for Bluetooth and UWB Applications with 5.5 GHz WLAN Notched Characteristics,” Progress in Electromagnetic Research C, Vol. 22, 2011, pp. 195-210. doi:10.2528/PIERC11053006
[12] B. S. Yildirim, B. A. Cetiner, G. Roqueta and L. Jofre, “Integrated Bluetooth and UWB Antenna,” IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009, pp. 149-152. doi:10.1109/LAWP.2009.2013371
[13] P. Wiggers, “Nonlinear Finite Element Methods,” Springr-Verlag, Berlin, 2008.
[14] D. V. Hutton, “Fundamentals of Finite Element Analysis,” McGraw-Hills Companies, New York, 2004
[15] T. Welinad, “A Disretization Method for the Solution of Maxwell’s Equations for Six Component Fields,” Electromagnetics and Communications AEU, Vol. 31, No.3, 1977, pp. 116-120.
[16] R. Marklin, “The Finite Integration Techniques as a General Tool to Compute Acoustic, Electromagnetic, Elastodynamic, and Coupled Wave Fields,” IEEE Press, New York, 2002, pp. 201-244.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.