Sensitivity of Nanostructured Iron Metal on Ultrasonic Properties
Alok Kumar Gupta, Archana Gupta, Devraj Singh, Sudhanshu Tripathi
.
DOI: 10.4236/ojmetal.2011.12005   PDF    HTML     5,336 Downloads   9,838 Views   Citations

Abstract

The present investigation is focused on the influence of the nanocrystalline structure of pure iron metal on the ultrasonic properties in the temperature range 100 - 300 K. The ultrasonic attenuation due to phonon- phonon interaction and thermoelastic relaxation phenomena has been evaluated for longitudinal and shear waves along <100>, <110> and <111> crystallographic directions. The second-and third-order elastic constants, ultrasonic velocities, thermal relaxation, anisotropy and acoustic coupling constants were also com- puted for the evaluation of ultrasonic attenuation in this temperature scale. The direction <111> is most ap- propriate to study longitudinal sound waves, while <100>, <110> direction are best to propagate shear waves due to lowest values of attenuation in these directions. Other physical properties correlated with obtained results have been discussed.

Share and Cite:

A. Gupta, A. Gupta, D. Singh and S. Tripathi, "Sensitivity of Nanostructured Iron Metal on Ultrasonic Properties," Open Journal of Metal, Vol. 1 No. 2, 2011, pp. 34-40. doi: 10.4236/ojmetal.2011.12005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. A. Elmore and M. A. Breazeale, “Dispersion and Fre- quency Dependent Nonlinearity in a Graphite-Epoxy Com- posite,” Ultrasonics, Vol. 41, No. 9, 2004, pp. 709-718. doi:10.1016/j.ultras.2003.11.001
[2] D. M. Profunser, J. Vollmann and J. Dual, “Determina- tion of the Material Properties of Microstructures by La- ser Based Ultrasound,” Ultrasonics, Vol. 42, No. 1-9, 2004, pp. 641-646.
[3] H. Ogi, A. Tsujimoto, S. Nishimura and M. Hirao, “Aco- ustic study of Kinetics of Vacancy Diffusion toward Dislocations in Aluminum,” Acta Materialia, Vol. 53, No. 2, 2005, pp. 513-517. doi:10.1016/j.actamat.2004.10.007
[4] R. P. Singh and G. S. Verma, “Phonon Conductivity and Acoustic Attenuation in Si,” Physical Review, Vol. 171, No. 3, 1968, pp. 838-842. doi:10.1103/PhysRev.171.838
[5] K. J. Singh, Y. Matsuda, K. Hattori, H. Nakamo and S. Na- gai, “Non-Contact Sound Velocities and Attenuation Mea- surements of Several Ceramics at Elevated Temperatures”, Ultrasonics, Vol. 41, No. 1, 2003, pp. 9-14. doi:10.1016/S0041-624X(02)00392-X
[6] R. Esquivel-Sirvent, B. Tan, I., Abdelraziq, S. S. Yun and F. B. Stumpf, “Absorption and Velocity of Ultrasound in Binary Solutions of Poly (Ethylene Glycol) and Water,” Journal of the Acoustical Society of America, Vol. 93, No.2, 1993, pp. 819-820. doi:10.1121/1.405444
[7] S. K. Kor and S. C. Deorani, “Correlation between Acous- tic and Dielectric Relaxation Times in Liquids,” Physical Review Letters, Vol. 27, No. 5, 1971, pp. 242-244. doi:10.1103/PhysRevLett.27.24
[8] S. K. Kor and S. K. Pandey, “Ultrasonic Investigation of Cholesteric Liquid Crystals,” Journal of Chemical Phys- ics, Vol. 64, No. 4, 1976, pp. 1333-1336. doi:10.1103/PhysRevLett.27.24
[9] S. K. Kor, R. R. Yadav and D. Singh, “Ultrasonic Studies of CTAB in Glycol,” Molecular Crystals Liquid Crystals, Vol. 392, No. 1, 2002, pp. 75-81. doi:10.1080.15421400390193918
[10] W. P. Mason, “Piezielectric Crystals and Their Application to Ultrasonics,” D. Van Nostrand Co. Inc. Princeton, New Jersey, 1950.
[11] W. P. Mason, “Physical Acoustics,” Vol. IIIB, Academic Press, New York, 1965.
[12] D. Singh, P. K. Yadawa and S. K. Sahu, “Effect of Elec- trical Resistivity on Ultrasonic Attenuation in NpTe,” Cryogenics, Vol. 50, No. 8, 2010, pp. 476-479. doi:10.1103/PhysRevLett.27.24
[13] D. Singh, D. K. Pandey, P. K. Yadawa and A. K. Yadav, “Attenuation of Ultrasonic Waves in V, Nb and Ta at Low Temperature,” Cryogenics, Vol. 49, No. 1, 2009, pp. 12- 16. doi:10.1016/j.cryogenics.2008.08.008
[14] D. Singh, D. K. Pandey, D. K. Pandey and R. R. Yadav, “Propagation of Ultrasonic waves in Neptunium Mono- chalcogenides,” Applied Acoustics, Vol. 72, No. 10, 2011, pp. 737-741. doi:10.1016/j.apacoust.2011.04.002
[15] D. Singh and D. K. Pandey, “Ultrasonic Investigations in Intermetallics,” Pramana-Journal of Physics, Vol. 72, No. 2, 2009, pp. 389-398. doi:10.1007/s12043-009-0034-7
[16] K. Brugger, “Thermodynamic Definition of Higher Order Elastic Coefficients,” Physical Review, Vol. 133, 1964, pp. A1611-A1612. doi:10.1103/PhysRev.133.A1611
[17] M. Born and J. E. Mayer, “Zur Gittertheorie der Lonenk- ristalle,” Zeitschrift für Physik, Vol. 75, No. 1-2, 1932, pp. 1-18. doi:10.1007/BF01340511
[18] P. B. Ghate, “Third-Order Elastic Constants of Alkali Ha- lide Crystals,” Physical Review, Vol. 139, No. 5A, 1965, pp. 1666-1674. doi:10.1103/PhysRev.139.A1666
[19] S. Mori Y. Hiki, “Calculation of the Third- and Fourth- Order Elastic Constants of Alkali Halide Crystals,” Jour- nal of the Physical Society of Japan, Vol. 45, No. 5, 1975, pp. 1449-1456. doi:10.1143/JPSJ.45.1449
[20] R. P. Singh and R. K. Singh, “Theoretical Study of Tem- perature Dependent Lattice Anharmonicity in TlCl and TlBr,” Current Applied Physics, Vol. 10, No. 4, 2010, pp. 1053-1058. doi:10.1016/j.cap.2009.12.040
[21] R. P. Singh and R. K. Singh, “Temperature Dependent Physiccal Effects of Ultrasonic Waves in Beryllium Chalco- genides,” Applied Acoustics, Vol. 71, No. 11, 2010, pp. 328-334. doi:10.1016/j.apacoust.2009.10.005
[22] J. Kumar, Kailash, V. Kumar and A. K. Choudhary, “Tem- perature Dependent of Higher Order Elastic Constants of TeO Crystal,” Asian Journal of Chemistry, Vol. 23, No. 12, 2011, pp. 5601-5604.
[23] J. Kumar, Kailash, S. K. Shrivastava, D. Singh and V. Ku- mar, “Ultrasonic Attenuation in Calcium Oxide,” Advances in Materials Physics and Chemistry, Vol. 1, No. 2, 2011, pp. 44-49. doi:/10.4236/ampc.2011.12008
[24] A. Akhiezer, “On the Absorption of Sound in Solids,” Jour- nal of Physics (Moscow), Vol. 1, No.1, 1939, pp. 277-287.
[25] H. E. B?mmel and K. Dransfeld, “Excitation and Atte- nuation of Hypersonic Waves in Quartz,” Physical Re- view, Vol. 117, No. 5, 1960, pp. 1245-1252. doi:10.1103/PhysRev.117.1245
[26] T. O. Woodruff and H. Ehrenreich, “Absorption of Sound in Insulators,” Physical Review, Vol. 123, No. 5, 1961, pp. 1553-1559. doi:10.1103/PhysRev.123.1553
[27] W. P. Mason and T. B. Bateman, “Relation between Third- Order Elastic Moduli and the Thermal Attenuation of Ul- trasonic Waves in Nonconducting and Metallic Crystals,” Journal of the Acoustical Society of America, Vol. 40, No. 4, 1966, pp. 852-862. doi:org/10.1121/1.1910158
[28] Y. L. Sun, Y. Dai, L. Q. Zhou and W. Chen, “Single- Crystal Iron Nanowire Arrays,” Solid State Phenomena, Vol. 121-123, No. 3, 2007, pp. 17-20. doi:10.4028/www.scientific.net/SSP.121-123.17
[29] D. E. Gray, Ed., “AIP Handbook,” 3rd Edition, Mc-Graw Hill Book Co. Inc., New York, 1965.
[30] K. Pekala and M. Pekala, “Low Temperature Transport Pro- perties of Nanocrystalline Cu, Fe and Ni,” Nanostruc- tured Materials, Vol. 6, No. 3, 1995, pp. 819-822. doi:10.1016/0965-9773(95)00185-9
[31] R. R. Yadav, D. Singh and A. K. Tiwari, “Ultrasonic Eva- luation in Rare-Earth Metals,” Journal of the Acoustical Society of India, Vol. 30, No. 1-2, 2002, pp. 59-63.
[32] L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Physical Review, Vol. 114, No. 3, 1959, pp. 687-690. doi:10.1103/PhysRev.114.687
[33] Y. S. Touloukian, et al., “Thermal Conductivity: Metallic Elements and Alloys,” TPRS Series, Vol. I, IFI/Plenum, New York, 1970.
[34] P. Haen and G. T. Meaden, “The Thermal Conductivity, Thermoelectric Power, and Electrical Resistivity of Tho- rium between 5 and 100°K,” Cryogenics, Vol. 5, No. 4, 1965, pp. 194-198. doi:10.1016/0011-2275(65)90056-1
[35] M. A. Gurry, S. Legvold and F. H. Spedding, “Electrical Re- sistivity of Europium and Ytterbium,” Physical Review B, Vol. 117, No. 4, 1960, pp. 953-954. doi:10.1103/PhysRev.117.953
[36] S. K. Kor, Kailash, K. Shanker and P. Mehrotra, “Behav- iour of Acoustical Phonons in Metals in Low Temperature Region,” Journal of the Physical Society of Japan, Vol. 56, No. 7, 1987, pp. 2428-2432. doi:10.1143/JPSJ.56.2428
[37] S. K. Kor and R. R. Yadav, “Ultrasonic Attenuation Due to Electron-Phonon Interaction in Palladium,” Journal of Pure and Applied Ultrasonics, Vol. 8, No. 3, 1986, pp. 89-90.
[38] S. K. Kor and R. K. Singh, “Ultrasonic Attenuation in Al- kali Metals,” Acustica, Vol. 79, No. 2, 1993, pp. 292-295.
[39] S. Sathish, S. Chaterjee, O. N. Awasthi and E. S. R. Go- pal, “Electron-Electron Scattering and Ultrasonic Attenu- ation in Potassium,” Journal of Low Temperature Physics, Vol. 63, No. 5-6, 1986, pp. 423-429. doi:10.1007/BF00681490

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.