Phosphatidylinositol transfer proteins: sequence motifs in structural and evolutionary analyses
Gerald J. Wyckoff, Ada Solidar, Marilyn D. Yoder
.
DOI: 10.4236/jbise.2010.31010   PDF    HTML     4,806 Downloads   8,821 Views   Citations

Abstract

Phosphatidylinositol transfer proteins (PITP) are a family of monomeric proteins that bind and transfer phosphatidylinositol and phosphatidylcholine between membrane compartments. They are required for production of inositol and diacylglycerol second messengers, and are found in most metazoan organisms. While PITPs are known to carry out crucial cell-signaling roles in many organisms, the structure, function and evolution of the majority of family members remains unexplored; primarily because the ubiquity and diversity of the family thwarts traditional methods of global alignment. To surmount this obstacle, we instead took a novel approach, using MEME and a parsimony-based analysis to create a cladogram of conserved sequence motifs in 56 PITP family proteins from 26 species. In keeping with previous functional annotations, three clades were supported within our evolutionary analysis; two classes of soluble proteins and a class of membrane-associat- ed proteins. By, focusing on conserved regions, the analysis allowed for in depth queries regarding possible functional roles of PITP proteins in both intra- and extra- cellular signaling.

Share and Cite:

Wyckoff, G. , Solidar, A. and Yoder, M. (2010) Phosphatidylinositol transfer proteins: sequence motifs in structural and evolutionary analyses. Journal of Biomedical Science and Engineering, 3, 65-77. doi: 10.4236/jbise.2010.31010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Allen-Baume, V., Segui, B. and Cockcroft, S. (2002) Current thoughts on the phosphatidylinositol transfer protein family. FEBS Letters, 531, 74-80.
[2] Cockcroft, S. and Carvou, N. (2007) Biochemical and biological functions of class I phosphatidylinositol transfer proteins. Biochim. Biophys. Acta, 1771, 677-691.
[3] Hsuan, J. and Cockcroft, S. (2001) The PITP family of phosphatidylinositol transfer proteins. Genome Biol., 2, 3011.1-3011.8.
[4] Routt, S.M. and Bankaitis, V.A. (2004) Biological functions of phosphatidylinositol transfer proteins. Biochem. Cell Biology, 82, 254-262.
[5] Thomas, G.M.H. and Pinxteren, J.A. (2000) Phosphatidylinositol transfer proteins: One big happy family or strangers with the same name? Mol. Cell Biol. Res. Comm., 4, 1-9.
[6] Wirtz, K.W.A. (2006) Phospholipid transfer proteins in perspective. FEBS Lett., 580, 5436-5441.
[7] Trivedi, D. and Padinjat, R. (2007) RdgB proteins: functions in lipid homeostasis and signal transduction. Biochim. Biophys. Acta, 1771, 692-699.
[8] Loewen, C.J., Roy, A. and Levine, T.P. (2003) A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J. 22, 2025-2035.
[9] Lev, S., Hernandez, J., Martinez, R., Chen, A., Plowman, G. and Schlessinger, J. (1999) Identification of a novel family of targets of PYK2 related to Drosophila retinal degeneration B (rdgB) protein. Mole. Cell. Biol., 19, 2278-2288.
[10] Milligan, S.C., Alb, J.G. Jr., Elagina, R. B., Bankaitis, V. A. and Hyde, D.R. (1997) The phosphatidylinositol transfer protein domain of Drosophila retinal degeneration B protein is essential for photoreceptor cell survival and recovery from light stimulation. J. Cell Biol., 139, 351-363.
[11] Vihtelic, T.S., Goebl, M., Milligan, S., O'Tousa, J.E. and Hyde, D.R. (1993) Localization of Drosophila retinal degeneration B, a membrane associated phosphatidylinositol transfer protein. J. Cell Biol., 122, 1013-1022.
[12] Lu, C., Vihtelic, T.S., Hyde, D.R. and Li, T. (1999) A neuronal-specific mammalian homolog of the Drosophila retinal degeneration B gene with expression restricted to the retina and dentate gyrus. J. Neurosci., 19, 7317-7325.
[13] Fullwood, Y., dos Santos, M. and Hsuan, J.J. (1999) Cloning and characterization of a novel human phosphatidylinositol transfer protein, rdgBb. J. Biol. Chem., 274, 31553-31558.
[14] Takano, N., Owada, Y., Suzuki, R., Sakagami, H., Shimosegawa, T. and Kondo, H. (2003) Cloning and characterization of a novel variant (mM-rdgB b1) of mouse M-rdgBs, mammalian homologs of Drosophila retinal degeneration B gene proteins, and its mRNA localization in mouse brain in comparison with other M-rdgBs. J Neurochem, 84, 829-839.
[15] Skinner, H.B., Alb ,J.G.Jr., Whitters, E.A., Helmkamp, G. M.Jr. and Bankaiitis V. A. (1993) Phospholipid transfer activity is relevant to but not sufficient for the essential function of the yeast SEC14 gene product. EMBO, 12, 4775-4784.
[16] Tanaka, S. and Hosaka, K. (1994) Cloning of a cDNA encoding a second phosphatidylinositol transfer protein of rat brain by complementation of the yeast sec14 mutation. J. Biochem (Tokyo), 115, 981-984.
[17] Cunningham, E., Tan, S.K., Swigart, P., Hsuan, J., Bankaitis, V. and Cockcroft, S. (1996) The yeast and mammalian isoforms of phosphatidylinositol transfer protein can all restore phospholipase C-mediated inositol lipid signaling in cytosol-depleted RBL-2H3 and HL-60 cells. Proc. Natl. Acad. Sci. USA, 93, 6589-6593.
[18] Hay, J.C. and Martin, T.F.J. (1993) Phosphatidylinositol transfer protein is required for ATP-dependent priming of Ca2+-activated secretion. Nature, 366, 572-575
[19] Jones, S.M., Alb, J.G.J., Phillips, S. E., Bankaitis and V.A., Howell, K.E. (1998) A phosphatidylinositol 3-kinase and phosphatidylinositol transfer protein act synergistically in formation of constitutive transport vesicles from the trans-Golgi network. J. Biol. Chem. 273, 10349-10354.
[20] Ohashi, M., de Vries, K.J., Frank, R., Snoek, G., Bankaitis, V., Wirtz, K. and Huttner, W.B. (1995) A role for phosphatidylinositol transfer protein in secretory vesicle formation. Nature, 377, 544-547.
[21] Swigart, P., Insall, R., Wilkins, A. and Cockcroft, S. (2000) Purification and cloning of phosphatidylinositol transfer proteins from Dictyostelium discoideum: homologues of both mammalian PITPs and Saccharomyces cerevisiae Sec14p are found in the same cell. Biochem. J., 347, 837-843.
[22] Yoder, M.D., Thomas, L.M., Tremblay, J.M., Oliver, R. L., Yarbrough, L.R. and Helmkamp, G.M.Jr. (2001) Structure of a multifunctional protein: mammalian phosphatidylinositol transfer protein complexed with phosphatidylcholine. J. Biol. Chem., 276, 9246-9252.
[23] Vordtriede, P.B, Doan, C.N., Tremblay, J.M., Helmkamp, G.M.J. and Yoder, M.D. (2005) Structure of PITPb in complex with phosphatidylcholine: Comparison of struc- ture and lipid transfer to other PITP isoforms. Biochemistry, 44, 14760-14771.
[24] van Tiel, C.M., Schouten, A., Snoek, G.T., Gros, P., Wirtz, K.W.A. (2002) The structure of phosphatidylinositol transfer protein a reveals sites for phospholipid binding and membrane association with major implications for its function. FEBS, 531, 69-73.
[25] Schouten, A., Agianian, B., Westerman, J., Kroon, J., Wirtz, K.W.A. and Gros, P. (2002) Structure of apo- phosphatidylinositol transfer protein a provides insight into membrane association. EMBO J., 21, 2117-2121.
[26] Sha, B., Phillips, S.E., Bankaitis, V.A. and Luo, M. (1998) Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol transfer protein. Nature, 391, 506-510.
[27] Romanowski, M.J., Soccio, R.E., Breslow, J.L. and Burley, S.K. (2002) Crystal structure of the Mus musculus cholesterol-regulated START protein 4 (StarD4) containing a StAR-related lipid transfer domain. Proc. Natl. Acad. Sci. USA, 99, 6949-6954.
[28] Hamilton, B.A., Smith, D.J., Mueller, K.L., Kerrebrock, A.W., Bronson, R.T., van Berkel, V., Daly, M.J., Kruglyak, L, Reeve, M.P., Nemhauser, J.L., Hawkins, T. L. Rubin, E.M. and Lander, E.S. (1997) The vibrator mutation causes neurodegeneration via reduced expression of PITPa: positional complementation cloning and extragenic suppression. Neuron, 18, 711-722.
[29] Alb, J.G.Jr., Phillips, S.E., Rostand, K., Cui, X., Pinxteren, J., Cotlin, L., Manning, T, Guo, S, York, J.D., Sontheimer, H., Collawn, J.F., Bankaitis, V.A. (2002) Genetic ablation of phosphatidylinositol transfer protein function in murine embryonic stem cells. Mol. Biol. Cell, 13, 739-754.
[30] Alb, J.G.J., Cortese, J.D, Phillips, S.E., Albin, R.L., Nagy, T.R., Hamilton, B.A. and Bankaitis, V.A. (2003) Mice lacking phosphatidylinositol transfer protein-a exhibit spinocerebellar degeneration, intestinal and hepatic steatosis, and hypoglycemia. J. Biol. Chem. 278, 33501- 33518.
[31] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410.
[32] Bailey, T.L. and Elkan, C.P. (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, CA, 28-36.
[33] Accelrys, I. (2005) Wisconsin Package v.10.3. Accelrys, Inc, San Diego, CA.
[34] Swofford, D.L. (2003) PAUP*. Phylogenetic analysis using parsimony and other methods. Version 4. Sinauer Associates, Sunderland, Massachusetts.
[35] Maddison, D.R. and Maddison, W.P. (2005) MacClade v.4.08. Sinauer Associates, Sunderland, Massachusetts.
[36] Ocaka, L., Spalluto, C., Wilson, D.I, Hunt, D.M., Halford, S. (2005) Chromosomal localization, genomic organization and evolution of the genes encoding human phosphatidylinositol transfer protein membrane- associated (PITPNM) 1, 2 and 3. Cytogenet Genome Res., 108, 293-202.
[37] Alb,J.G. Jr., Gedvilaite, A., Cartee, R.T., Skinner, H.B., Bankaitis, V.A. (1995) Mutant rat phosphatidylinositol/phosphatidylcholine transfer proteins specifically defective in phosphatidylinositol transfer: Implications for the regulation of phospholipid transfer activity. Proc. Natl. Acad. Sci. USA, 92, 8826-8830.
[38] Tilley, S.J., Skippen, A., Murray-Rust, J., Swigart, P.M., Stewart, A., Morgan, C.P., Cockcroft, S. and McDonald, N.Q. (2004) Structure-function analysis of phosphatidylinositol transfer protein alpha bound to human phosphatidylinositol. Structure, 12, 317-326.
[39] Venuti, S.E. and Helmkamp, G.M.J. (1988) Tissue distribution, purification and characterization of rat phosphatidylinositol transfer protein. Biochim Biophys Acta, 946, 119-128.
[40] Lev, S. (2004) The role of the Nir/rdgB protein family in membrane trafficking and cytoskeleton remodeling. Exp. Cell Res., 297, 1-10.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.