Back Illuminated N/P/P+ Bifacial Silicon Solar Cell under Modulated Short-Wavelength: Determination of Base Optimum Thickness

Abstract

A bifacial silicon solar cell under monochromatic illumination in frequency modulation by the rear side is being studied for the optimization of base thickness. The density of photogenerated carriers in the base is obtained by resolution of the continuity equation, with the help of boundary conditions at the junction surface (n+/p) and the rear face (p/p+) of the base. For a short wavelength corresponding to a high absorption coefficient, the AC photocurrent density is calculated and represented according to the excess minority carrier’s recombination velocity at the junction, for different modulation frequency values. The expression of the AC recombination velocity of excess minority carriers at the rear surface of the base of the solar cell is then deduced, depending on both, the absorption coefficient of the silicon material and the thickness of the base. Compared to the intrinsic AC recombination velocity, the optimal thickness is extracted and modeled in a mathematical relationship, as a decreasing function of the modulated frequency of back illumination. Thus under these operating conditions, a maximum short-circuit photocurrent is obtained and a low-cost bifacial solar cell can be achieved by reducing material (Si) to elaborate the base thickness.

Share and Cite:

Sall, M. , Diarisso, D. , Faty Mbaye Fall, M. , Diop, G. , Ndiaye, M. , Loum, K. and Sissoko, G. (2021) Back Illuminated N/P/P+ Bifacial Silicon Solar Cell under Modulated Short-Wavelength: Determination of Base Optimum Thickness. Energy and Power Engineering, 13, 207-220. doi: 10.4236/epe.2021.135014.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Green, M.A. (1995) Silicon Solar Cells: Advanced Principles & Practice. Bridge Printer Pty, Ltd., Roseberry.
[2] Liou, J.J. and Wong, W.W. (1992) Comparison and Optimization of the Performance of Si and GaAs Solar Cells. Solar Energy Materials and Solar Cells, 28, 9-28.
https://doi.org/10.1016/0927-0248(92)90104-W
[3] Yadav, P., Pandey, K., Tripathi, B., Kumar, C.M., Srivastava, S.K., Singh, P.K. and Kumar, M. (2015) An Effective Way to Analyze the Performance Limiting Parameters of a Poly-Crystalline Silicon Solar Cell Fabricated in the Production Line. Solar Energy, 122, 1-10.
https://doi.org/10.1016/j.solener.2015.08.005
[4] Nam, L.Q., Rodot, M., Ghannam, M., Coppye, J., de Schepper, P., Nijs, J., Sarti, D., Perichaud, I. and Martinuzzi, S. (1992) Solar Cells with 15.6% Efficiency on Multicrystalline Silicon, Using Impurity Gettering Back Surface Field and Emitter Passivation. International Journal of Solar Energy, 11, 273-279.
https://doi.org/10.1080/01425919208909745
[5] Martinuzzi, S., Perichad, I. and Stemmer, M. (1994) External Gettering around Extended Defects in Multicrystalline Silicon Wafers. Solid State Phenomena, 37-38, 361-366.
https://doi.org/10.4028/www.scientific.net/SSP.37-38.361
[6] Paternoster, G., Bellutti, P., Collini, A., Ferrario, L., Ficorella, F. and Mattedi, F. (2013). Back-Contact Vertical Junction Silicon Solar Cells for Concentrating Photovoltaics. 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris, 30 September-4 October 2013, 672-675.
[7] Meier, D.L., Hwang, J.-M. and Campbell, R.B. (1998) The Effect of Doping Density and Injection Level on Minority-Carrier Lifetime as Applied to Bifacial Dendritic Web Silicon Solar Cells. IEEE Transactions on Electron Devices, 35, 70-79.
https://doi.org/10.1109/16.2417
[8] Antilla, O.J. and Hahn, S.K. (1993) Study on Surface Photovoltage Measurement of Long diffusion Length Silicon: Simulation Results. Journal of Applied Physics, 74, 558-569.
https://doi.org/10.1063/1.355343
[9] Furlan, J. and Amon, S. (1985) Approximation of the Carrier Generation Rate in Illuminated Silicon. Solid-State Electron, 28, 1241-1243.
https://doi.org/10.1016/0038-1101(85)90048-6
[10] Ray, U.C. and Agarwal, S.K. (1988) Wavelength Dependence of Short-Circuit Current Decay in Solar Cells. Journal of Applied Physics, 63, 547-549.
https://doi.org/10.1063/1.340084
[11] Aberle, A.G., Glunz, S. and Warta, W. (1992) Impact of Illumination Level and Oxide Parameters on Shockley-Read-Hall Recombination at the Si-SiO2 Interface. Journal of Applied Physics, 71, 4422-4431.
https://doi.org/10.1063/1.350782
[12] Rajkanan, K., Singh, R. and Schewchun, J. (1979) Absorption coefficient of silicon for solar cell calculations. Solid-State Electronics, 22, 793-795.
https://doi.org/10.1016/0038-1101(79)90128-X
[13] Bousse, L., Mostarshed, S. and Hafeman, D. (1994) Investigation of Carrier Transport through Silicon Wafers by Photocurrent Measurements. Journal of Applied Physics, 75, 4000-4008.
https://doi.org/10.1063/1.356022
[14] Honma, N. and Munakata, C. (1987) Sample Thickness Dependence of Minority Carrier Lifetimes Measured Using an ac Photovoltaic Method. Japanese Journal of Applied Physics, 26, 2033-2036.
https://doi.org/10.1143/JJAP.26.2033
[15] Kumar, S., Singh, P.K. and Chilana, G.S. (2009) Study of Silicon Solar Cell at Different Intensities of Illumination and Wavelengths Using Impedance Spectroscopy. Solar Energy Materials and Solar Cells, 93, 1881-1884.
https://doi.org/10.1016/j.solmat.2009.07.002
[16] Mandelis, A.A. (1989) Combined AC Photocurrent and Photothermal Reflectance Response Theory of Semiconducting p-n Junctions. Journal of Applied Physics, 66, 5572-5583.
https://doi.org/10.1063/1.343662
[17] Wang, C.H. and Neugroschel, A. (1991) Minority-Carrier Lifetime and Surface Recombination Velocity Measurement by Frequency-Domain Photoluminescence. IEEE Transactions on Electron Devices, 38, 2169-2180.
https://doi.org/10.1109/16.83745
[18] Jung, T.-W., Lindholm, F.A. and Neugroschel, A. (1984) Unifying View of Transient Responses for Determining Lifetime and Surface Recombination Velocity in Silicon Diodes and Back-Surface-Field Solar Cells, with Application to Experimental short-Circuit-Current decay. IEEE Transactions on Electron Devices, 31, 588-595.
https://doi.org/10.1109/T-ED.1984.21573
[19] Lindholm, F.A., Liou, J.J., Neugroschel, A. and Jung, T.W. (1987) Determination of Lifetime and Surface Recombination Velocity of p-n Junction Solar Cells and Diodes by Observing Transients. IEEE Transactions on Electron Devices, 34, 277-283.
https://doi.org/10.1109/T-ED.1987.22919
[20] Kunst, M. and Sanders, A. (1992) Transport of Excess Carriers in Silicon Wafers. Semiconductor Science and Technology, 7, 51-59.
https://doi.org/10.1088/0268-1242/7/1/009
[21] Colomb, C.M., Stockman, S.A., Varadarajan, S. and Stillman, G.E. (1992) Minority Carrier Transport in Carbon Doped Gallium Arsenide. Applied Physics Letters, 60, 65-67.
https://doi.org/10.1063/1.107375
[22] Fossum, J.G. and Burgess, E.L. (1978) High Efficiency p+-n-n+ Back-Surface-Field Solar Cells. Applied Physics Letters, 33, 238-240.
https://doi.org/10.1063/1.90311
[23] Arora, J.D., Singh, S.N. and Mathur, P.C. (1981) Surface Recombination Effects on the Performance of n+/p Step and Diffused Junction Silicon Solar Cells. Solid-State Electronics, 24, 739-747.
https://doi.org/10.1016/0038-1101(81)90055-1
[24] Dieng, A., Diao, A., Maiga, A.S., Dioum, A., Ly, I. and Sissoko, G. (2007) A Bifacial Silicon Solar Cell Parameters Determination by Impedance Spectroscopy. Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan, Italy, 3-7 September 2007, 436-440.
[25] Cuevas, A., Sinton, R.A. and King, R.R. (1991) A Technology-Based Comparison between Two-Sided and Back-Contact Silicon Solar Cells. The 10th European Photovoltaic Solar Energy Conference, Lisbon, 8-12 April 1991, 23-26.
https://doi.org/10.1007/978-94-011-3622-8_6
[26] Terheiden, B., Hahn, G., Fath, P. and Bucher, E. (2000) The Lamella Silicon Solar Cell. Proceeding of 16th European Photovoltaic Solar Energy Conference, Glasgow, 1-5 May 2000, 1377-1380.
[27] Ayvazian, G.E, Kirakosyan, G.H. and Minasyan, G.A. (2004) Characteristics of Solar Cells with Vertical p-n Junction. Proceedings of 19th European Photovoltaic Solar Energy Conference, Paris, 7-11 June 2004, 117-119.
[28] Cuevas, A., Luque, A. and Ruiz, J.M. (1980) N+PN+ Double-Sided Solar Cell for Optimal Static Concentration. Proceedings of the 14th IEEE Photovoltaic Specialists Conference, San Diego, 7-10 January 1980, 76-81.
[29] Ohtsuka, H., Sakamoto, M., Tsutsui, K. and Yazawa, Y. (2000) Bifacial Silicon Solar Cells with 21.3% Front Efficiency and 19.8% Rear Efficiency Prog. Progress in Photovoltaics: Research and Applications, 8, 385-390.
https://doi.org/10.1002/1099-159X(200007/08)8:4%3C385::AID-PIP340%3E3.0.CO;2-B
[30] Hüber, A, Aberle, A.G. and Hezel, R. (1997) 20% Efficient Bifacial Silicon Solar Cells. 14th European Photovoltaic Solar Energy Conference, Munich, 1997, 92-95.
[31] Bordin, N., Kreinin, L. and Eisenberg, N. (2001) Determination of Recombination Parameters of Bifacial Silicon Cells with a Two Layer Step-Liked Effect Distribution in the Base Region. Proceedings of the 17th European PVSEC, Munich, 22-26 October 2001, 1495-1498.
[32] Diasse, O., Diao, A., Ly, I., Diouf, M.S., Diatta, I., Mane, R., Traore, Y. and Sissoko, G. (2018) Back Surface Recombination Velocity Modeling in White Biased Silicon Solar Cell under Steady State. Journal of Modern Physics, 9, 189-201.
https://doi.org/10.4236/jmp.2018.92012
[33] Wise, J.F. (1970) Vertical Junction Hardened Solar Cell. U.S Patent No. US3690953A.
[34] Gover, A. and Stella, P. (1974) Vertical Multijunction Solar-Cell One-Dimensional Analysis. IEEE Transactions on Electron Devices, 21, 351-356.
https://doi.org/10.1109/T-ED.1974.17927
[35] Hu, C., Carney, J.K. and Frank, R.I. (1977) New Analysis of a High Voltage Vertical Multijunction Solar Cell. Journal of Applied Physics, 48, 442-444.
https://doi.org/10.1063/1.323355
[36] Sarfaty, R., Cherkun, A., Pozner, R., Segev, G., Zeierman, E., Flitsanov, Y., Kribus, A. and Rosenwaks, Y. (2011) Vertical Junction Si Micro-Cells for Concentrating Photovoltaics. Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, 5-9 September 2011, 145-147.
[37] Stokes, E.D. and Chu, T.L. (1977) Diffusion Lengths in Solar Cells from Short-Circuit Current Measurements. Applied Physics Letters, 30, 425-426.
https://doi.org/10.1063/1.89433
[38] Basu, P.K. and Singh, S.N. (1994) On The Determination of Minority Carrier Diffusion Length in the Base Region of n+-p-p+ Silicon Solar Cells Using Photoresponse Methods. Solar Energy Materials and Solar Cells, 33, 317-329.
https://doi.org/10.1016/0927-0248(94)90234-8
[39] Dhariwal, S.R. and Vasu, N.K. (1981) A Generalized Approach to Lifetime Measurement in pn Junction Solar Cells. Solid-State Electronics, 24, 915-927.
https://doi.org/10.1016/0038-1101(81)90112-X
[40] Joardar, K., Dondero, R.C. and Schroda, D.K. (1989) Critical Analysis of the Small-Signal Voltage-Decay Technique for Minority-Carrier Lifetime Measurement in Solar Cells. Solid State Electronics, 32, 479-483.
https://doi.org/10.1016/0038-1101(89)90030-0
[41] Sissoko, G., Sivoththanam, S., Rodot, M. and Mialhe, P. (1992) Constant Illumination-Induced Open Circuit Voltage Decay (CIOCVD) Method, as Applied to High Efficiency Si Solar Cells for Bulk and Back Surface Characterization. 11th European Photovoltaic Solar Energy Conference and Exhibition, Montreux, 12-16 October 1992, 352-354.
[42] Rosling, M., Bleichner, H., Mundqvist, M. and Nordlander, E. (1992) A Novel Technique for the Simultaneous Measurement of Ambipolar Carrier Lifetime and Diffusion Coefficient in Silicon. Solid-State Electronics, 35, 1223-1227.
https://doi.org/10.1016/0038-1101(92)90153-4
[43] Misiakos, K. and Tsamakis, D. (1994) Electron and Hole Mobilities in Lightly Doped Silicon. Applied Physics Letters, 64, 2007-2009.
https://doi.org/10.1063/1.111721
[44] De Vischere, P. (1986) Comment on G.J. Rees “Surface Recombination Velocity —A Useful Concept”. Solid-State Electronics, 29, 1161-1165.
https://doi.org/10.1016/0038-1101(86)90059-6
[45] Misiakos, K., Wang, C.H., Neugroschel, A. and Lindholm, F.A. (1990) Simultaneous Extraction of Minority-Carrier Parameters in Crystalline Semiconductors by Lateral Photocurrent. Journal of Applied Physics, 67, 321-333.
https://doi.org/10.1063/1.345256
[46] Verlinden, P. and Van De Wiele, F. (1983) Determination of Diffusion Length and Surface Recombination Velocity in Inter digitated Back Contact (IBC). Solar Cells Solid-State Electronics, 26, 1089-1094.
https://doi.org/10.1016/0038-1101(83)90007-2
[47] Diallo, H.L., Seïdou, A., Maiga, Wereme, A. and Sissoko, G. (2008) New Approach of Both Junction and Back Surface Recombination Velocities in a 3D Modelling Study of a Polycrystalline Silicon Solar Cell. European Physical Journal Applied Physics, 42, 203-211.
https://doi.org/10.1051/epjap:2008085
[48] Sissoko, G., Museruka, C., Corréa, A., Gaye, I. and Ndiaye, A.L. (1996) Spectral Light Effect on Recombination Parameters of Silicon Solar Cell. World Renewable Energy Congress, Denver, 15-21 June 1996, Part III, 1487-1490.
[49] Oualid, J., Bonfils M., Crest, J.P., Mathian, G., Amzil, H., Dugas, J., Zehaf, M. and Martinuzzi, S. (1982) Photocurrent and Diffusion Lengths at the Vicinity of Grain Boundaries (g.b.) in N and P-Type Polysilicon. Evaluation of the g.b. Recombination Velocity. Revue de Physique Appliquée, 17, 119-124.
https://doi.org/10.1051/rphysap:01982001703011900
[50] Takahashi, Y., Kondo, H., Yamazaki, T., Uraoka, Y. and Fuyuki, T. (2007) Precise Analysis of Surface Recombination Velocity in Crystalline Silicon Solar Cells Using Electroluminescence. Japanese Journal of Applied Physics, 46, 1149-1151.
https://doi.org/10.1143/JJAP.46.L1149
[51] Gaubas, E. and Vanhellemont, J. (1996) A simple Technique for the Separation of Bulk and Surface Recombination Parameters in Silicon. Journal of Applied Physics, 80, 6293-6297.
https://doi.org/10.1063/1.363705
[52] Gupta, S., Ahmed, P. and Garg, S. (1988) A Method for the Determination of the Material parameters D, L, S and from Measured Short-Circuit Photocurrent. Solar Cells, 25, 61-72.
https://doi.org/10.1016/0379-6787(88)90058-0
[53] Ducas, J. (1994) 3D Modelling of a Reverse Cell Made with Improved Multicrystalline Silicon Wafer. Solar Energy Materials & Solar Cells, 32, 71-88.
https://doi.org/10.1016/0927-0248(94)90257-7
[54] Dieng, M., Seibou, B., Ly, I., Sitor Diouf, M., Wade, M. and Sissoko, G. (2017) Silicon Solar Cell Emitter Extended Space Charge Region Determination under Modulated Monochromatic Illumination by using Gauss’s Law. International Journal of Innovative Technology and Exploring Engineering, 6, 17-20.
[55] Del Alamo, J., Eguren, J. and Luque, A. (1980) Operating Limits of Al-Alloyed High-Low Junction for BSF Solar Cells. Solid-States Electronics, 24, 415-420.
https://doi.org/10.1016/0038-1101(81)90038-1
[56] Sidi Dede, M., Lamine Ba, M., Amadou Ba, M., Ndiaye, M., Gueye, S., Sow, E., et al. (2020) Back Surface Recombination Velocity Dependent of Absorption Coefficient as Applied to Determine Base Optimum Thickness of an n+/p/p+ Silicon Solar Cell. Energy and Power Engineering, 12, 445-458.
http://www.scirp.org/journal/epe
https://doi.org/10.4236/epe.2020.127027
[57] Demesmaeker, E., Symons, J., Nijs, J. and Mertens, R. (1991) The Influence of Surface Recombination on the Limiting Efficiency and Optimum Thickness of Silicon Solar Cells. 10th European Photovoltaic Solar Energy Conference, Lisbon, 8-12 April 1991, 66-69.
https://doi.org/10.1007/978-94-011-3622-8_17
[58] Ndiaye, A., Gueye, S., Sow, O., Diop, G., Ba, A., Ba, M., Diatta, I., Habiboullah, L. and Sissoko, G. (2020) A.C. Recombination Velocity as Applied to Determine n+/p/p+ Silicon Solar Cell Base Optimum Thickness. Energy and Power Engineering, 12, 543-554.
https://doi.org/10.4236/epe.2020.1210033
[59] Ly Diallo, H., Wade, M., Ly, I., NDiaye, M., Dieng, B., Lemrabott, O.H., Maïga, A.S. and Sissoko, G. (2012) 1D Modeling of a Bifacial Silicon Solar Cell under Frequency Modulation, Monochromatic Illumination: Determination of the Equivalent Electrical Circuit Related to the Surface Recombination Velocity. Research Journal of Applied Sciences, Engineering and Technology, 4, 1672-1676.
[60] Diop, M.S., Ba, H.Y., Thiam, N., Diatta, I., Traore, Y., Ba, M.L., El Hadji, S., Mballo, O. and Sissoko, G. (2019) Surface Recombination Concept as Applied to Determinate Silicon Solar Cell Base Optimum Thickness with Doping Level Effect. World Journal of Condensed Matter Physics, 9, 102-111.
https://doi.org/10.4236/wjcmp.2019.94008
[61] Maimouna Mint, E.L.Y., Thiam, N., Ndiaye, M., Traore, Y., Mane, R., El hadji, S., Mballo, O., Dieng, M.S., Sarr, C.T., Ly, I. and Sissoko, G. (2020) Surface Recombination Velocity Concept as Applied to Determinate Back Surface Illuminated Silicon Solar Cell Base Optimum Thickness, under Temperature and External Magnetic Field Effects. Journal of Scientific and Engineering Research, 7, 69-77.
http://www.jsaer.com
[62] El Hadji, N., Sahin, G., Dieng, M., Thiam, A., Ly Diallo, H., Ndiaye, M. and Sissoko, G. (2015) Study of the Intrinsic Recombination Velocity at the Junction of Silicon Solar Cell under Frequency Modulation and Radiation. Journal of Applied Mathematics and Physics, 3, 1522-1535.
https://doi.org/10.4236/jamp.2015.311177
[63] Thiam, Nd., Diao, A., Ndiaye, M., Dieng, A., Thiam, A., Sarr, M., Maiga, A.S. and Sissoko, G. (2012) Electric Equivalent Models of Intrinsic Recombination Velocities of a Bifacial Silicon Solar Cell under Frequency Modulation and Magnetic Field Effect. Research Journal of Applied Sciences, Engineering and Technology, 4, 4646-4655.
[64] Ly, I., Zerbo, I., Wade, M., Ndiaye, M., Dieng, A., Diao, A., Thiam, N., Thiam, A., Dione, M.M., Barro, F.I., Maiga, A.S. and Sissoko, G. (2011) Bifacial Silicon Solar Cell under Frequency Modulation and Monochromatic Illumination: Recombination Velocities and Associated Equivalent Electrical Circuits. Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, 5-9 September 2011, 298-301.
[65] Gueye, M., Diallo, H.L., Kosso, A., Moustapha, M., Traore, Y., Diatta, I. and Sissoko, G. (2018) Ac Recombination Velocity in a Lamella Silicon Solar Cell. World Journal of Condensed Matter Physics, 8, 185-196.
http://www.scirp.org/journal/wjcmp
https://doi.org/10.4236/wjcmp.2018.84013
[66] Diop, G., Ba, H.Y., Thiam, N., Traore, Y., Dione, B., Ba, M.A., Diop, P., Diop, M.S., Mballo, O. and Sissoko, G. (2019) Base Thickness Optimization of a Vertical Series Junction Silicon Solar Cell under Magnetic Field by the Concept of Back Surface Recombination Velocity of Minority Carrier. ARPN Journal of Engineering and Applied Sciences, 14, 4078-4085.
[67] Ba, M.L., Thiam, N., Thiame, M., Traore, Y., Diop, M.S., Ba, M., Sarr, C.T., Wade, M. and Sissoko, G. (2019) Base Thickness Optimization of a (n+-p-p+) Silicon Solar Cell in Static Mode under Irradiation of Charged Particles. Journal of Electromagnetic Analysis and Applications, 11, 173-185.
https://doi.org/10.4236/jemaa.2019.1110012

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.