Journal of Textile Science and Technology

Volume 6, Issue 2 (May 2020)

ISSN Print: 2379-1543   ISSN Online: 2379-1551

Google-based Impact Factor: 1.04  Citations  

Analysis of the Adsorption of Toxic Chromium (VI) by Untreated and Chitosan Treated Banana and Areca Fiber

HTML  XML Download Download as PDF (Size: 7460KB)  PP. 81-106  
DOI: 10.4236/jtst.2020.62007    833 Downloads   1,981 Views  Citations

ABSTRACT

This paper work involves bunch experiments to investigate the effect of contact time, pH, and adsorbent dose on the extent of adsorption by bio-composites. Adsorption capacity of Chromium (VI) onto chitosan coated with banana and areca fiber was investigated in a batch system by considering the effects of various parameters like contact time, initial concentration, pH and adsorbent dose. The chitosan and fibers (banana and areca) were then cross-linked with glutaraldehyde to remove chromium [Cr (VI)] from water via static adsorption. It was found that optimum chromium absorption capacity of chitosan was assessed at pH of 2.5 to 4.5 and contact time of 30 to 180 minutes for raw banana and areca fiber and for chitosan treated banana & areca fiber. Though optimum adsorption of chromium of chitosan was measured 34.17 ppm (85.42%) from a 100 ml solution containing 40 parts per million (ppm) of Cr (VI) at 120 minutes, pH of 3.0 and 120 milligram (mg) adsorbent dose size, use of composite will be more favorable in the point of environmental concern as well as low cost because chitosan preparation is comparatively costly then banana and areca fiber. On the other hand, untreated banana and areca fiber optimum adsorption of chromium measured 3.65 ppm (9.1%) at 180 min and, pH of 4.5 and 140 mg adsorbent dose size and 3.76 ppm (9.4%) at 180 min, pH of 4.5 and 160 mg adsorbent dose size respectively. In case of chitosan treated banana fiber, it was observed that adsorption was increased from 17.664 to 30.057 (75.14%). On the other hand, for areca fiber with chitosan, it was observed that adsorption was increased from 21.664 to 30.156 (75.39%) ppm. The Langmuir and Freundlich adsorption models were used for the mathematical description of the adsorption of chromium ion onto composites and it was found that the Langmuir adsorption isotherm was more fitted models which mean that a monolayer adsorption surface was created. After analyzing from IBM SPSS 25 software, we got the standard deviation value of adsorbed Cr by raw chitosan, untreated banana and areca of pH test results were 9.399, 1.072, 0.728 ppm, time test results were 2.163, 0.859, 0.896 ppm and adsorbent dose test results were 6.588, 0.966, 1.211 ppm correspondingly. The standard deviation results of pH, time and amount of treated banana fiber test results were 1.831, 2.693 and 5.469 ppm congruently. On the other hand, the standard deviation results of pH, time and amount of treated areca fiber test results were 3.293, 2.673 and 4.152 ppm individually. Fourier transform infrared (FT-IR) spectroscopy analysis indicated that both amino and hydroxyl groups of chitosan, banana and areca fiber were engaged in the adsorption.

Share and Cite:

Begum, H. , Haque, A. , Islam, M. , Hasan, M. , Ahmed, S. , Razzak, M. and Khan, R. (2020) Analysis of the Adsorption of Toxic Chromium (VI) by Untreated and Chitosan Treated Banana and Areca Fiber. Journal of Textile Science and Technology, 6, 81-106. doi: 10.4236/jtst.2020.62007.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.