American Journal of Plant Sciences

Volume 10, Issue 11 (November 2019)

ISSN Print: 2158-2742   ISSN Online: 2158-2750

Google-based Impact Factor: 1.20  Citations  h5-index & Ranking

An Optimum Dose of Olive Leaf Extract Improves Insulin Receptor Substrate-1, Tyrosine Kinase, and Glucose Transporters, While High Doses Have Genotoxic and Apoptotic Effects

HTML  XML Download Download as PDF (Size: 2414KB)  PP. 1933-1948  
DOI: 10.4236/ajps.2019.1011136    646 Downloads   2,702 Views  Citations

ABSTRACT

Type 2 diabetes is the most common type of diabetes. Conventionally many drugs are used for the treatment of diabetes such as biguanides, sulfonylureas, meglitinides, etc. But the desired effective treatment is still not to be achieved. So researches are going on for the development of effective alternative therapy against diabetes. Olive leaves are traditionally used in the treatment of the disease. However, studies on its mechanism of action are not yet enough. The aim of this study was to investigate whether olive leaf extract (OLE) improves insulin receptor substrate-1 (IRS-1), tyrosine kinase (TK), GLUT-2, and GLUT-4. Oleuropein levels were analyzed from OLE obtained by using four different solvents, and the highest content of methanol extract was selected for the study. Different concentrations of OLE (2.5 to 320 μg/mL) were incubated with hepatocellular carcinoma (HepG2) cells for 24 hours. After incubation, cell viability was assessed based on luminometric ATP cell viability assay kit. Intracellular reactive oxygen species (ROS) generating level was detected using 2,7dichlorodihydrofluorescein-diacetate (H2DCF-DA) fluorescent probes. Apoptosis was evaluated by acridine orange/ethidium bromide double staining method. Genotoxicity was evaluated by alkaline single cell gel electrophoresis assay (Comet Assay). Protein expression levels of IRS-1, TK, GLUT-2, and GLUT-4 were analyzed by western blotting technique from the obtained cell lysates. Although an optimum doses of OLE (10 μg/mL) maximally increased cell proliferation, decreased ROS generation improved IRS-1, TK, GLUT-2, and GLUT-4 protein expression levels (about fivefold), higher doses (10 to 320 μg/mL) markedly decreased the cell viability, increased DNA damage, apoptosis and ROS generation in a concentration-dependent manner. OLE can be used in the treatment of type 2 diabetes. However, in order to find the most effective and non-toxic concentration, dose optimization is required.

Share and Cite:

Kocyigit, A. , Kasap, B. , Guler, E. , Kaleli, H. , Kesmen, M. , Dikilitas, M. and Karatas, E. (2019) An Optimum Dose of Olive Leaf Extract Improves Insulin Receptor Substrate-1, Tyrosine Kinase, and Glucose Transporters, While High Doses Have Genotoxic and Apoptotic Effects. American Journal of Plant Sciences, 10, 1933-1948. doi: 10.4236/ajps.2019.1011136.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.